
- •6. Силы в механике (гравитационные, упругости, трения).
- •7. Энергия как универсальная мера различных форм движения и взаимодействия. Работа постоянной и переменной силы. Мощность.
- •8.Кинетическая энергия и ее связь с работой внешних сил. Потенциальная энергия м.Т. Во внешнем силовом поле консервативных сил. Закон сохранения полной механической энергии.
- •9. Момент инерции тела, теорема Штейнера (без доказательства).
- •10. Кинетическая энергия при вращательном движении
- •11. Момент силы. Уравнение динамики вращательного движения твердого тела.
- •12. Момент импульса. Закон сохранения момента импульса.
- •13. Элементы специальной теории относительности (сто): преобразования Галилея. Механический принцип относительности. Постулаты специальной (частной) теории относительности.
- •14.Преобразования Лоренца. Следствия из преобразований Лоренца.
- •15. Основной закон релятивисткой динамики материальной точки. Закон взаимосвязи массы и энергии.
- •Закон взаимосвязи массы и энергии
- •16. Электрические заряды. Дискретность электрических зарядов, закон сохранения заряда. Закон Кулона.
- •17.Электрическое поле, его характеристики: напряженность и потенциал. Силовые линии, напряжённость поля точечного заряда. Работа по перемещению заряда в электрическом поле.
- •18. Потенциальная энергия заряда. Принцип аддитивности потенциальной энергии. Потенциал электрического поля. Соотношение между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •19. Циркуляция вектора. Принцип суперпозиции электрических полей.
- •20. Поток вектора . Теорема Гаусса и ее использование для расчета электрических полей равномерно заряженных плоскости, нити, заряженной сферической поверхности и объёмно-заряженного шара.
- •21.Проводники в электрическом поле. Поле внутри проводника и у его поверхности. Электростатическая защита
- •22.Электрическое поле в диэлектриках. Свободные и связанные заряды. Поляризованность. Диэлектрическая восприимчивость. Диэлектрическая проницаемость среды.
- •23. Теорема Гаусса для электростатического поля в диэлектрике:
14.Преобразования Лоренца. Следствия из преобразований Лоренца.
В СТО между координатами и временем в двух ИСО существуют соотношения, называемые преобразованиями Лоренца. Если СО движутся друг относительно друга вдоль оси ОХ, то их можно записать в следующем виде.
При
условии
они
переходят в преобразования Галилея.
С учетом преобразований Лоренца принцип относительности можно сформулировать следующим образом: законы, описывающие любые физические явления, во всех ИСО должны иметь одинаковый вид. Этот вывод называется релятивистской инвариантностью законов физики.
Следствия:
1. Если в одной системе отсчета некоторые события происходят в точках x1 и x2 в один и тот же момент времени t, то в другой системе отсчета эти события происходят в точках x'1 и x'2 в разные моменты времени t'1 и t'2:
Понятие одновременности оказывается зависящим от выбора системы отсчета.
2.
Если в одной системе отсчета между
двумя событиями, происходящими в одной
и той же точке, проходит время t,
то в другой системе отсчета между
этими же событиями проходит время
Это соотношение выражает релятивистский эффект замедления времени в движущихся объектах.
3. Если в одной системе отсчета покоящаяся линейка имеет длину l, то в системе отсчета, в которой линейка движется со скоростью u вдоль своей оси, ее длина
Этот эффект называется релятивистским сокращением продольных размеров тела. Поперечные размеры тела не изменяются при переходе в другие инерциальные системы отсчета.
4. Если в одной системе отсчета тело имеет скорость v = (vx, vy, vz), то его скорость v' = (v'x, v'y, v'z) в другой системе отсчета равна
или
в трехмерной векторной форме
5. Из соотношений (n4), (n5) следует постоянство скорости c в различных системах отсчета. Действительно, если вычислить сумму квадратов левых частей этих равенств при условии
v2=(vx)2+(vy) 2+(vz) 2=c2, (n6)
получим
v'2=(v'x)2+ (v'y)2+(v'z) 2=c2. (n7)
Т. е. скорость c одинакова по величине во всех инерциальных системах отсчета (независимо от направления). Заметим, что направления скоростей v и v' в общем случае различны в разных системах отсчета.
15. Основной закон релятивисткой динамики материальной точки. Закон взаимосвязи массы и энергии.
Масса движущихся релятивистских частиц зависит от их скорости:
(39.1)
где m0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в вакууме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.
Из принципа относительности Эйнштейна, утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона
оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.
Основной закон релятивистской динамики материальной точки имеет вид
или
где