
- •6. Силы в механике (гравитационные, упругости, трения).
- •7. Энергия как универсальная мера различных форм движения и взаимодействия. Работа постоянной и переменной силы. Мощность.
- •8.Кинетическая энергия и ее связь с работой внешних сил. Потенциальная энергия м.Т. Во внешнем силовом поле консервативных сил. Закон сохранения полной механической энергии.
- •9. Момент инерции тела, теорема Штейнера (без доказательства).
- •10. Кинетическая энергия при вращательном движении
- •11. Момент силы. Уравнение динамики вращательного движения твердого тела.
- •12. Момент импульса. Закон сохранения момента импульса.
- •13. Элементы специальной теории относительности (сто): преобразования Галилея. Механический принцип относительности. Постулаты специальной (частной) теории относительности.
- •14.Преобразования Лоренца. Следствия из преобразований Лоренца.
- •15. Основной закон релятивисткой динамики материальной точки. Закон взаимосвязи массы и энергии.
- •Закон взаимосвязи массы и энергии
- •16. Электрические заряды. Дискретность электрических зарядов, закон сохранения заряда. Закон Кулона.
- •17.Электрическое поле, его характеристики: напряженность и потенциал. Силовые линии, напряжённость поля точечного заряда. Работа по перемещению заряда в электрическом поле.
- •18. Потенциальная энергия заряда. Принцип аддитивности потенциальной энергии. Потенциал электрического поля. Соотношение между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •19. Циркуляция вектора. Принцип суперпозиции электрических полей.
- •20. Поток вектора . Теорема Гаусса и ее использование для расчета электрических полей равномерно заряженных плоскости, нити, заряженной сферической поверхности и объёмно-заряженного шара.
- •21.Проводники в электрическом поле. Поле внутри проводника и у его поверхности. Электростатическая защита
- •22.Электрическое поле в диэлектриках. Свободные и связанные заряды. Поляризованность. Диэлектрическая восприимчивость. Диэлектрическая проницаемость среды.
- •23. Теорема Гаусса для электростатического поля в диэлектрике:
9. Момент инерции тела, теорема Штейнера (без доказательства).
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
где:
—
масса i-й
точки,
— расстояние от i-й
точки до оси.
Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
Теорема Штейнера : Момент инерции твёрдого тела вокруг произвольной оси равен моменту инерции тела вокруг оси, проходящей через центр массы данного тела параллельно данной оси, плюс произведение массы тела на квадрат расстояния между осями.
10. Кинетическая энергия при вращательном движении
- момент инерции
твердого тела, относительно оси z.
Моментом
инерции материальной точки
называется величина:
Следовательно,
Величина I зависит от положения оси вращения и от распределения масс в теле.
11. Момент силы. Уравнение динамики вращательного движения твердого тела.
Момент силы— векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр.
Основным
законом динамики вращательного движения
является связь момента силы М с моментом
инерции
и угловым
ускорением β:
12. Момент импульса. Закон сохранения момента импульса.
Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — скалярная величина.
Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.
Момент импульса замкнутой системы сохраняется.
Момент
импульса
частицы относительно некоторого начала
отсчёта определяется векторным
произведением ее радиус-вектора и
импульса:
где
— радиус-вектор частицы относительно
выбранного неподвижного в данной системе
отсчета начала отсчёта,
— импульс частицы.
В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.
Моментом импульса вращающегося тела называют физическую величину, равную произведению момента инерции тела I на угловую скорость ω его вращения. Момент импульса обозначается буквой L:
L = Iω
Поскольку
уравнение вращательного движения можно
представить в виде:
Окончательно будем иметь:
Это уравнение, полученное здесь для случая, когда I = const, справедливо и в общем случае, когда момент инерции тела изменяется в процессе движения.
Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L = Iω относительно данной оси сохраняется:
ΔL = 0, если M = 0.
Следовательно,
L = Iω = const.
Это и есть закон сохранения момента импульса. Иллюстрацией этого закона может служить неупругое вращательное столкновение двух дисков, насажанных на общую ось
Неупругое вращательное столкновение двух дисков.
Закон
сохранения момента импульса:
= (
+
)ω