
- •Характеристика древесины как конструкционного материала. Достоинства и недостатки. Примеры уникальных конструкций.
- •2. Виды лесоматериалов. Терминология. Круглые лесоматериалы.
- •3. Пиленые и лущеные лесоматриалы.
- •3. Строение древесины. Основные факторы, влияющие на ее физико-механические св-ва.
- •5. Анизотропия и неоднородность древесины. Работа древесины при растяжении, сжатии и изгибе.
- •6 . Работа древесины при смятии и скалывании.
- •7. Основы расчета деревянных конструкций по предельным состояниям.
- •10. Нагельные соединения. Виды нагелей, их работа
- •11.Соединения на шпонках
- •12. Достоинства клееной древесины по сравнению с обычной. Характеристика клеев
- •13. Клеевые соединения. Виды. Особенности их работы.
- •14. Балки построечного изготовления.
- •15. Клееные деревянные балки.
- •16. Клеефанерные балки. Общие положения. Ребристые конструкции.
- •1 7. Балки с волнистой стенкой, основы расчета. Технология изготовления.
- •1 8. Армированные клееные балки.
- •19. Деревянные рамы построечного изготовления. Решение узлов.
- •20. Клееные деревянные рамы. Решение карнизных узлов.
- •Соединение с пятиугольной вставкой
- •21. Клееные деревянные рамы. Решение коньковых и опорных узлов.
- •22. Деревянные арки. Виды. Особенности работы. Решение узлов.
- •Деревянные фермы. Виды. Особенности работы. Сегментные фермы заводского изготовления.
- •24. Конструирование и основы расчета на примере металлодеревянной брусчатой фермы цнииск.
- •25. Особенности конструирования ферм на врубках. Характеристика их работы
- •26. Фермы из фанерных труб
- •27. Обеспечение пространственной устойчивости каркасного деревянного здания
- •28.Виды деревянных стоек. Способы их крепления к фкндаменту.
16. Клеефанерные балки. Общие положения. Ребристые конструкции.
К
леедостчатые
имеют достаточно массивные стенки, а
хотелось бы что-нибудь полегче – фанера,
которая лучше работает на скалывание.
Древесину заменяем на фанеру. Прочность
на растяжение сжатие примерно такая
же, как у древ, но за счет расположения
слоев шпона прочность на скалывание
увеличивается примерно в 10 раз. 7-12 мм
толщина фанерного слоя. В зависимости
от профиля здания, фанерные балки
применяют с параллельными поясами (с
плоской и волнистой стенками) и двускатные
(с плоской стенкой) – с прямолинейным
или криволинейным верхним поясом. Балка
с криволинейным верхним поясом наиболее
выгодна, так как ее очертания более
всего соответствует эпюре изгибающих
моментов. Клеефанерная балка является
облегченной версией клеедощатой, в
которой отсутствует древесина в центре,
практически не участвующая в работе
конструкции.
Х
арактеристики
сечений балок с плоской стенкой:
1)двутавровое
Проще всего по технологии самое экономичное по расходу материала, неплохо передает нагрузку, но имеет малый момент инерции на кручение при потере устойчивости – не обеспечивает большой несущей способности, те может использоваться только для не сильно загруженных балок небольшого пролета
2)коробчатое
Имеет гладкую фасадную поверхность (не скапливается пыль), но кроме сдвига возникает также отдирающий момент. Модуль упругости примерно в 20 раз ниже – те устойчивость значительно выше, чем у двутавровых. Теперь на стенку передается нагрузка с половины верхнего пояса, равнодействующая расположена посередине – отрывающие усилия.
3)двутаврово-коробчатое
Наиболее выгодное: равнодействующая направлена прямо по стенке, те отдирающего момента не возникает; несущая способность при удачном подборе элементов может быть в 4 раза выше, чем в коробчатом сечении. Но не очень удобны для химически агрессивных сред.
Пояса работают на растяжение (нижний) и на сжатие (верхние), воспринимают нормальные напряжения. Доски /слои/ в пакетах поясов располагаются вертикально и стыкуются зубчатым шипом до производства балок. В поясах балок коробчатого сечения допускается применять горизонтальное расположение слоев. Если высота поясов превышает 100 мм, во избежание появления в швах значительных дополнительных напряжений от возможной усушки древесины в поясах следует выполнять горизонтальные пропилы 5-10мм со стороны стенок. Так как сопротивление растяжению-сжатию у фанеры не сильно превышает сопротивление растяжению-сжатию древесины, делать пояса из фанеры нецелесообразно.
Стенки балок выполняют из водостойкой фанеры толщиной не менее 1/130 высоты стенки, но не менее 8 мм. Фанеру располагают волокнами рубашек, либо перпендикулярно к поясам, либо параллельно. В первом случае она воспринимает только касательные напряжения, лучше работает на скалывание между шпонами и на срез. Но вертикальные стыки её могут устраиваться только с помощью фанерных накладок. Во втором случае фанера воспринимает как касательные, так и часть нормальных напряжений, лучше работает на сжатие и растяжение при изгибе балки, а стыки легко выполняются склеиванием листов на «ус». При больших сосредоточенных грузах, фанеру располагают волокнами рубашек перпендикулярно к поясам. Фанерная стенка имеет сопротивление скалыванию примерно в 10 раз превышающее сопротивление древесины(тк приходится перерезать волокна в части слоев шпона), что позволяет уменьшить ее толщину. Но это приводит к тому, что при изгибе балки тонкая фанерная стенка теряет местную устойчивость.
Поперечная устойчивость плоской фанерной стенки обеспечивают дощатыми ребрами, которые ставят по длине балки на расстоянии 1/8 – 1/10 её пролета (таким образом уменьшая поле фанерной стенки, способное потерять устойчивость). Опорные ребра принимают такой же ширины, как пояса (воспринимают опорную реакцию), а промежуточные вдвое уже. Ребра устанавливают на равных расстояниях, а у опор их при необходимости ставят чаще, но не ближе, чем на расстоянии, равном высоте стенки. Возможно укрепление фанеры в опорной панели диагональным ребром. Ребра должны совпадать со стыками фанерной стенки и располагаться в местах приложения сосредоточенных нагрузок (например, если в покрытии есть прогоны, то опорные ребра следует размещать под ними). Ребра приторцовывают к поясам балки и приклеивают.
В целом вся конструкция работает на изгиб.
Схема конструктивного расчета балок с плоской стенкой, волокна рубашек, расположенных вдоль поясов. Балки, составленной из двух материалов (древесины и фанеры) рассчитывают по приведенным геометрическим характеристикам поперечных сечений. Приведение осуществляется к тому материалу, в котором проверяют напряжения.
Принятое сечение проверяют на:
прочность по нормальным растягивающим напряжениям: δр = Mрасч/Wпр ≤ Rр
по нормальным сжимающим напряжениям: δсж = Mрасч/Wпр ≤ Rс×γ, где γ – коэффициент продольного изгиба сжатого стержня из плоскости изгиба, зависит от гибкости пояса.
При этом максимальный изгибающий момент возникает не в середине пролета, как в балках постоянного сечения, а на некотором расчетном расстоянии от опоры. Это связано с тем, что в месте, где момент должен достигать своего наибольшего значения (в середине балки), высота балки так же наибольшая => момент сопротивления повышается, и эпюра моментов становится похожей на лифчик =)
прочность фанерной стенки на срез по нейтральной оси в месте действия максимальной поперечной силы: τ=Qmax×Sпр/Iпр×Σδф≤ Rф.ср.
прочность клеевых швов между поясами и фанерной стенкой на скалывание:
τ=Qmax×Sпр/Iпр×Σhп×n≤ Rф.ск, где n – число вертикальных швов
прочность фанерной стенки на действие главных растягивающих напряжений в местах приложения сосредоточенных нагрузок, либо в местах одновременного действия
больших τ и δ: где
где
Rф.рα
– расчетное сопротивление фанеры сжатию
под углом α
τст и δст – нормальные и касательные напряжения в стенке на уровне внутренней кромки поясов
м
естная устойчивость фанерной стенки
τст и δст – нормальные и касательные напряжения в расчетном сечении стенки на уровне внутренней кромки поясов
Kи; Kτ- коэффициенты, определяемые по СНиПу
hрасч - расчетная высота стенки
hст -расстояние между внутренними кромками поясов
Проверка выполняется в панели, где действует максимальная поперечная сила, и в панели, где нормальные и касательные напряжения одновременно достигают больших значений (например, если в пределах границ панели приложена сосредоточенная сила). Геометрические характеристики и расчетные напряжения определяются для сечения, расположенного в середине длинны панели.
жесткость (прогиб балки)
г
де
правая часть – предельный относительный
прогиб
Наиболее экономична балка с криволинейным верхним поясом, так как ее форма повторяет форму эпюры моментов.
Пропилы через 10 см. уменьшают площадь склеивания – уменьшают равнодействующие усадочные напряжения.