Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
theory.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
1.65 Mб
Скачать

14.2 Слабая сходимость

Пусть задана последовательность с. в. , задано некоторое распределение с функцией распределения и — произвольная с. в., имеющая распределение .

Определение 50. Говорят, что последовательность с. в. при сходится слабо или по распределению к с. в. , или говорят, что последовательность с. в. слабо сходится к распределению , или говорят, что распределения с.в. слабо сходится к распределению , и пишут:, или , или , если для любого х такого, что функция распределения непрерывна в точке х, имеет место сходимость при .

Иначе говоря, слабая сходимость — это поточечная сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Свойство 15. Если , и функция распределения непрерывна в точках a и b, то Наоборот, если во всех точках a и b непрерывности функции распределения имеет место, например, сходимость , то .

Следующее важное свойство уточняет отношения между сходимостями.

Свойство 16.

1. Если , то .

2. Если = const, то .

Доказательство.Докажем, что слабая сходимость к постоянной влечет сходимость по вероятности.

Пусть

при любом x, являющемся точкой непрерывности предельной функции , то есть при всех .

Возьмем произвольное и докажем, что . Раскроем модуль:

(сужаем событие под знаком вероятности)

поскольку в точках функция непрерывна, и, следовательно, имеет место сходимость последовательности к

Осталось заметить, что не бывает больше 1, так что по лемме о двух милиционерах .

Следующее свойство приводит пример операций, которые можно применять к слабо сходящимся последовательностям — скажем, домножать их на последовательности, сходящиеся по вероятности к постоянным величинам.

Свойство 17.

1. Если const и , то .

2. Если const и , то .

Несколько содержательных примеров слабой сходимости мы рассмотрим в следующей главе. Но основной источник слабо сходящихся последовательностей и необычайно мощное и универсальное средство для асимптотического анализа распределения сумм независимых и одинаково распределенных случайных величин предоставляет нам ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА

14.3 Центральная предельная теорема

Мы будем называть следующее утверждение «ЦПТ А. М. Ляпунова» (1901), но сформулируем теорему Ляпунова только в частном случае — для последовательности независимых и одинаково распределенных случайных величин.

Теорема 31 (ЦПТ).

Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: . Обозначим через сумму первых n случайных величин. Тогда последовательность с. в. слабо сходится к стандартному нормальному распределению.

Пользуясь определением и свойствами слабой сходимости, и заметив, что функция распределения любого нормального закона непрерывна всюду на R, утверждение ЦПТ можно сформулировать любым из следующих способов:

Следствие 18. Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией. Следующие утверждения эквивалентны друг другу и равносильны утверждению ЦПТ.

Для любых вещественных x < y при имеет место сходимость

Для любых вещественных x < y при имеет место сходимость

Для любых вещественных x < y при имеет место сходимость

Если — произвольная с. в. со стандартным нормальным распределением, то

Замечание 19. Еще раз напомним, что функция распределения стандартного нормального закона ищется либо по соответствующей таблице в справочнике, либо с помощью какого-либо программного обеспечения, но никак не путем нахождения первообразной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]