Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
theory.doc
Скачиваний:
6
Добавлен:
01.03.2025
Размер:
1.65 Mб
Скачать

11.2 Свойства математического ожидания

Во всех свойствах предполагается, что рассматриваемые математические ожидания существуют.

E0. Математическое ожидание случайной величины есть ЧИСЛО!

E1. Для произвольной функции функция g : R R

Доказательство. Мы докажем это свойство (как и почти все дальнейшие) только для дискретного распределения. Пусть g(ξ) принимает значения с1 с2 … с вероятностями

Тогда

E2 Математическое ожидание const равно этой const Eс = с.

E3. const можно вынести за знак математического ожидания: E ξ) = с Eξ.

Доказательство. Следует из свойства E1 при g(ξ) = с ξ .

E4. Математическое ожидание суммы любых случайных величин ξ и η равно сумме их математических ожиданий.

E (ξ + η ) = E (ξ )+ E (η)

Доказательство. Для величин с дискретным распределением: пусть xk и yn — значения ξ и η, соответственно.

E5.Если ξ0 п.н. (« почти наверное», т.е. с вероятностью 1: P(ξ 0 ) = 1), то E ξ0;

Если ξ0 п.н., и при этом Eξ = 0, то ξ = 0 п.н., то есть P(ξ = 0) = 1.

Следствие 11.

Если ξη п.н., то E ξ  Eη .

Если ξη п.н., и при этом Eξ = Eη, то ξ = η п.н.

E6. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.: если ξ и η независимы, то

E(ξη) = Eξ Eη.

Доказательство.

Замечание 16. Обратное утверждение к свойству E6 неверно: из равенства E(ξη) = Eξ Eη. Не следует независимость величин ξ и η.

Пример 28. Пусть φ U0,2π, ξ = cos φ, η = sin φ— заведомо зависимые случайные величины. Но математическое ожидание их произведения равно произведению их математических ожиданий: по свойству E1

11.3 Моменты старших порядков. Дисперсия

Определение 40. Если , то число

называется моментом порядка k (k -м моментом) случайной величины ξ;

называется абсолютным моментом порядка k (абсолютным k -м моментом) случайной величины ξ;

называется центральным моментом порядка k (центральным k -м моментом) случайной величины ξ;

называется абсолютным центральным моментом порядка k (абсолютным центральным k -м моментом) случайной величины ξ.

Число Dξ = E(ξEξ)2 (центральный момент порядка 2) называется дисперсией случайной величины ξ

Пример 29. Пусть, скажем, случайная величина ξ принимает значение 0 с вероятностью 1-10-5 , и значение 100 с вероятностью 10-5. Посмотрим, как моменты разных порядков реагируют на большие, но маловероятные значения случайной величины.

Пример 30. Дисперсия Dξ = E(ξEξ)2 есть «среднее значение квадрата отклонения случайной величины ξ от своего среднего». Посмотрим, за что эта величина отвечает.

Пусть случайная величина ξ принимает значения +-1 с вероятностью 1/2, а случайная величина η — значения ю +-10 с вероятностью 1/2. Тогда Eξ = Eη = 0 поэтому D ξ = E ξ2 = 1, Dη = Eη2 = 100. Говорят, что дисперсия характеризует степень разброса значений случайной величины вокруг ее математического ожидания.

Если говорить о распределении случайной величины, как о распределении единичной массы по невесомому стержню, то дисперсия есть в точности момент инерции этого стержня, закрепленного в центре тяжести.

Определение 40. Если дисперсия величины ξ конечна, то число называют среднеквадратичным отклонением случайной величины ξ.

Следует хорошо понимать, что из существования моментов больших порядков следует существование моментов меньших порядков. В частности, конечность второго момента (или дисперсии) влечет существование математического ожидания.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]