Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
theory.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
1.65 Mб
Скачать

10.3 Примеры использования формулы свертки

Пример 26. Пусть независимые случайные величины ξ и η имеют стандартное нормальное распределение. Докажем, что их сумма имеет нормальное распределение с параметрами 0 и 2.

Доказательство. По формуле свертки, плотность суммы равна

Выделим полный квадрат по u в показателе экспоненты:

Тогда

Последнее равенство верно поскольку под интегралом стоит плотность нормального распределения с параметрами 0 и , так что интеграл по всей прямой равен 1. Итак, мы получили, что плотность суммы есть плотность нормального распределения с параметрами 0 и 2.

Если сумма двух независимых случайных величин из одного и того же распределения (возможно, с разными параметрами) имеет такое же распределение, говорят, что это распределение устойчиво относительно суммирования.

В следующих утверждениях, перечислены практически все устойчивые распределения.

Лемма 3. Пусть случайные величины ξ Пλ и η Пμ независимы. Тогда ξ+ η Пλ+μ

Лемма 4. Пусть случайные величины ξ Bn,p и ξ Bm,p независимы. Тогда ξ+ η Bm+n,p

Лемма 5. Пусть случайные величины и независимы. Тогда

Показательное распределение не устойчиво по суммированию, однако его можно считать частным случаем гамма-распределения, которое уже в некотором смысле устойчиво относительно суммирования.

Определение 37. Случайная величина ξ имеет гамма-распределение Гα,λ с параметрами α > 0, λ > 0, если она имеет плотность распределения

где постоянная c вычисляется из условия

Заметим, что показательное распределение Еα есть гамма-распределение Гα,1.

Лемма 6. Пусть независимые случайные величины ξ1, … , ξn имеют показательное распределение Еα = Гα,1 Тогда ξ1 +…+ξn Гα,n

«Случайных величин без мат. ожидания не бывает, так как, если у нас есть случайная величина мы всегда в праве от нее что-нибудь ожидать.»

Из студенческой контрольной работы.

Раздел 11. Числовые характеристики случайных величин

11.1 Математическое ожидание случайной величины

Определение 38. Математическим ожиданием Eξ (средним значением, первым моментом) случайной величины ξ с дискретным распределением, задаваемым таблицей P(ξ = аi) = pi, называется число

если указанный ряд абсолютно сходится.

Если же

, то говорят, что математическое ожидание не существует.

Определение 39. Математическим ожиданием Eξ случайной величины ξ с абсолютно непрерывным распределением с плотностью распределения fξ(x), называется число

если указанный интеграл абсолютно сходится.

Если же

, то говорят, что математическое ожидание не существует.

Математическое ожидание имеет простой физический смысл: если на прямой разместить единичную массу, поместив в точку аi массу pi (для дискретного распределения), или «размазав» ее с плотностью fξ(x) (для абсолютно непрерывного распределения), то точка Eξ есть координата «центра тяжести» прямой.

Пример 26. Пусть случайная величина ξ равна числу очков, выпадающих при одном подбрасывании кубика. Тогда

в среднем при подбрасывании кубика выпадает 3.5 очка

Пример 27. Пусть случайная величина ξ — координата точки, брошенной наудачу на отрезок [a,b]. Тогда

центр тяжести равномерного распределения на отрезке есть середина отрезка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]