- •Оглавление
- •1. Общая характеистика задач и методов проектирования 7
- •1. Математические методы проектирования 25
- •3. Эвристические методы проектирования 50
- •4. Использование методов искусственного интеллекта при проектировании 97
- •5. Задачи оптимизации 122
- •Введение. Основные положения, термины и определения
- •1. Общая характеистика задач и методов проектирования
- •1.1. Основные стадии и виды задач проектирования
- •1.2. Обоснование и оценка качества задач, решаемых рэс
- •1.3. Примеры системотехнического проектирования
- •1.3.1. Обоснование тактико-технических характеристик радиолокационных систем
- •1.3.2. Защита от активных помех
- •1.4. Организация проектирования
- •1.5. Основные этапы проектирования рэс
- •1.5.1. Основные этапы научно-исследовательской работы
- •1.5.2. Основные этапы опытно-конструкторской работы
- •1.6. Методы моделирования
- •Математические методы проектирования
- •2.1. Общие положения
- •2.2. Виды критериев качества
- •2.3. Нехудшие и худшие системы. Диаграммы обмена.
- •2.4. Методы отыскания нехудших систем
- •2.4.1. Метод рабочих характеристик
- •2.4.2. Весовой метод отыскания Мнх
- •2.4.3. Комбинированный метод отыскания Мнх
- •2.5. Применение условного критерия предпочтения
- •3. Эвристические методы проектирования
- •3.1. Тенденции развития бортового радиоэлектронного оборудования
- •3.2. Основные направления развития перспективных комплексов бортового оборудования
- •Архитектура системы «Pave Pillar»
- •3.3. Основные направления развития интерфейсов межмодульного обмена для сопряжения рэс
- •3.3.1. Основные понятия и определения
- •3.3.2. Модель взаимодействия открытых систем
- •3.3.2.1. Физический уровень
- •3.3.2.2. Канальный уровень
- •3.3.2.3. Сетевой уровень
- •3.3.2.4. Транспортный уровень
- •3.3.2.5. Сеансовый уровень
- •3.3.2.6. Представительский уровень
- •3.3.2.7. Уровень приложений
- •3.3.3. Классификация каналов межмодульного обмена
- •3.3.3.1. Управление обменом в сети типа «звезда»
- •3.3.3.2. Управление обменом в сети типа «кольцо»
- •3.3.3.3. Управление обменом в сети типа «шина»
- •3.3.4. Интерфейс магистральный последовательный системы электронных модулей (гост 26165.52-87)
- •3.3.4.1 Физическая организация мультиплексных каналов
- •3.3.4.2. Принцип управления обменом информации
- •3.4. Коммутируемые сети
- •3.4.1. Сети с коммутацией сообщений
- •3.4.2. Сети с коммутацией каналов
- •3.4.3. Сети с коммутацией пакетов
- •3.4.4. Модель взаимодействия открытых систем
- •3.4.4.1. Физический уровень
- •3.4.4.2. Канальный уровень
- •3.4.4.3. Сетевой уровень
- •3.4.4.4. Транспортный уровень
- •3.4.4.5. Сеансовый уровень
- •3.4.4.6. Представительский уровень
- •3.4.4.7. Уровень приложений
- •4. Использование методов искусственного интеллекта при проектировании
- •4.1. Бортовые экспертные системы
- •4.1.1. Классификация экспертных систем
- •4.2. Структура и принципы построения экспертных систем
- •4.3. Методы представления экспертных знаний
- •4.3.1. Логические исчисления
- •4.3.2. Фреймовая модель
- •4.3.3. Модель семантической сети
- •4.3.4. Продукционные правила
- •4.3.5. Нечеткие множества
- •4.4. Распознавание образов
- •4.4.1. Основные термины и определения
- •4.4.2. Качественное описание задачи распознавания
- •4.4.3. Основные этапы построения системы распознавания
- •4.4.3.1. Изображающие числа и базис
- •4.4.3.2. Восстановление булевой функции по изображающему числу
- •4.4.3.3. Булевы уравнения
- •5. Задачи оптимизации
- •5.1. Задача о наилучшей консервной банке
- •5.2. Одномерные задачи оптимизации
- •5.3. Численное решение одномерных задач оптимизации
- •5.3.1 Метод равномерного распределения точек по отрезку
- •5.3.2. Метод распределения точек по отрезку, учитывающий результаты вычисления целевой функции
- •5.3.3. Специальные методы
- •5.4. Многомерные задачи оптимизации
- •5.4.1. Метод покоординатного спуска
- •5.4.2. Метод градиентного спуска
- •5.4.3. Метод наискорейшего спуска
- •5.4.4. Проблема «оврагов»
- •5.4.5. Проблема многоэкстремальности
- •5.5. Линейное программирование.
- •5.5.1. Траекторная задача
- •5.5.2. Задача об использовании ресурсов
5.3.3. Специальные методы
До сих пор, обсуждая задачи оптимизации, мы говорили об универсальных методах их решения. Однако во многих случаях из характера задачи вытекает какая-то дополнительная информация о свойствах целевой функции. Это может быть использовано для разработки специальных алгоритмов. Такой подход позволяет существенно сократить объем вычислений и получить ответ наиболее эффективным способом.
В качестве примера рассмотрим случай, когда нам известно заранее, что целевая функция y = f(x) имеет на отрезке [a, b] только один минимум. График такой функции показан на рисунке 5.3.
Рисунок 5.3.
Для решения задачи в этом случае можно воспользоваться следующим методом. Возьмем некоторый шаг h и будем последовательно вычислять значения функции f(x) в точках x0 = a, x1 = a + h, сравнивая получаемые числа y0, y1 ,…Сначала они будут убывать: y0 > y1 > y2… Однако в дальнейшем найдется точка xk = y0 + kn, где будет справедливо неравенство yk-1 < yk, yk+1 ≥ yk. Это означает, что наименьшее значение функции достигается на отрезке [xk-1, xk+1] и его приближенно можно считать равным yk = f(xk). Если требуемая точность в решении задачи еще не обеспечена, то нужно уменьшить шаг h и повторить описанную процедуру для отрезка [xk-1, xk+1].
5.4. Многомерные задачи оптимизации
До сих пор мы обсуждали одномерные задачи оптимизации, в которых целевая функция зависела только от одного аргумента. Однако подавляющее большинство реальных задач оптимизации, представляющих практический интерес, являются многомерными: в них целевая функция зависит от нескольких аргументов, причем, иногда их число может быть, весьма большим.
Математическая постановка таких задач аналогична их постановке в одномерном случае: ищется наименьшее (наибольшее) значение целевой функции, заданное на некотором множестве Е возможных значений ее аргументов. В случае, когда целевая функция непрерывна, а множество Е является замкнутой ограниченной областью, остается справедливой теорема Вейерштрасса. Тем самым выделяется класс задач оптимизации, для которых гарантировано существование решения. В дальнейшем мы всегда будем предполагать, что все рассматриваемые задачи принадлежат этому классу.
Как и в одномерном случае, характер задачи и соответственно возможные способы решения существенно зависят от той информации о целевой функции, которая нам доступна в процессе ее исследования. В одних случаях целевая функция задается аналитической функцией. Тогда можно вычислять ее частные производные, получать явное выражение для градиента и использовать эту информацию для решения задачи. В других случаях никакой формулы для целевой функции нет, а имеется лишь возможность определить ее значения в любой точке рассматриваемой области (с помощью расчетов, в результате эксперимента и т. п.). В таких случаях в процессе решения мы фактически можем найти значения целевой функции лишь в конечном числе точек и по этой информации приближенно установить ее наименьшее значение для всей области.
Рисунок 5.4
Многомерные задачи, естественно, являются более сложными и трудоемкими, причем трудоемкости их решения возрастают при увеличении
их размерности. Для примера возьмем самый простой по идее приближенный метод поиска наименьшего значения. Покроем рассматриваемую область сеткой с шагом h (рисунок 5.4) и определим значения функции в ее узлах.
Сравнивая полученные числа между собой, найдем среди них наименьшее и примем его приближенно за наименьшее значение функции для всей области. Однако для задач большой размерности он практически непригоден из-за слишком большого времени, необходимого для проведения расчетов. Иногда сплошной перебор заменяют случайным поиском. В этом случае точки сетки просматриваются не подряд, а по случайному закону. В результате поиск наименьшего значения ускоряется, но теряет свою надежность.
Перейдем к обсуждению методов, позволяющих вести поиск наименьшего значения функции целенаправленно.
