Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение. Эл. ток в разл. средах.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
702.98 Кб
Скачать

1.2 Зависимость сопротивления металлов от температуры

Сопротив­ление металлов связано с тем, что электроны, движущиеся в провод­нике, взаимодействуют с ионами кристаллической решетки и теряют при этом часть энергии, которую они приобретают в электрическом поле.

Опыт показывает, что сопротив­ление металлов зави­сит от температуры. Каждое вещество можно харак­теризовать постоянной для него вели­чиной, называемой температурным коэффициентом сопротивления α. Этот коэффициент равен относитель­ному изменению удельного сопро­тивления проводника при его нагре­вании на 1 К: α =

где ρ0 — удельное сопротивление при температуре T0 = 273 К (0°С), ρ — удельное сопротивление при данной температуре T. Отсюда зависимость удельного сопротивления металли­ческого проводника от температуры выражается линейной функцией: ρ = ρ0(1+ αT).

Зависимость сопротивления от температуры выражается такой же функцией:

R = R0(1+ αT).

Т емпературные коэффициенты со­противления чистых металлов срав­нительно мало отличаются друг от друга и примерно равны 0,004 K-1. Изменение сопротивления про­водников при изменении температу­ры приводит к тому, что их вольт-амперная характеристика не линейна. Это особенно заметно в тех слу­чаях, когда температура проводни­ков значительно изменяется, напри­мер при работе лампы накаливания. На рисунке приведена ее вольт - амперная характеристика. Как видно из рисунка, сила тока в этом случае не прямо пропорциональна напря­жению. Не следует, однако, думать, что этот вывод противоречит закону Ома. Зависимость, сформулированная в законе Ома, справедлива только при постоян­ном сопротивлении. Зависимость сопротивления ме­таллических проводников от темпе­ратуры используют в различных из­мерительных и автоматических уст­ройствах. Наиболее важным из них является термометр сопротивления. Основной частью термометра со­противления служит платиновая про­волока, намотанная на керамиче­ский каркас. Проволоку помещают в среду, температуру кото­рой нужно определить. Измеряя со­противление этой проволоки и зная ее сопротивление при t0 = 0 °С (т. е. R0), рассчитывают по последней формуле температуру среды.

Сверхпроводимость. Однако до конца XIX в. нельзя было прове­рить, как зависит сопротивление про­водников от температуры в области очень низких температур. Только в начале XX в. голландскому учено­му Г. Камерлинг-Оннесу удалось пре­вратить в жидкое состояние наибо­лее трудно конденсируемый газ — гелий. Температура кипения жидкого гелия равна 4,2 К. Это и дало воз­можность измерить сопротивление некоторых чистых металлов при их охлаждении до очень низкой темпе­ратуры.

В 1911г работа Камерлинг-Оннеса завершилась крупнейшим откры­тием. Исследуя сопротивление рту­ти при ее постоянном охлаждении, он обнаружил, что при температуре 4,12 К сопротивление ртути скачком падало до нуля. В даль­нейшем ему удалось это же явление наблюдать и у ряда других метал­лов при их охлаждении до темпе­ратур, близких к абсолютному нулю. Явление полной потери металлом электрического сопротивления при определенной температуре получило название сверхпроводимости.

Не все материалы могут стать сверхпроводниками, но их число до­статочно велико. Однако у многих из них было обнаружено свойство, которое значительно препятствовало их применению. Выяснилось, что у большинства чистых металлов сверхпроводимость исчезает, когда они находятся в силь­ном магнитном поле. Поэтому, когда по сверх­проводнику течет значительный ток, он создает вокруг себя магнитное поле и сверхпроводимость в нем исчезает. Всё же это препятствие оказалось преодолимым: было выяснено, что не­которые сплавы, например ниобия и циркония, ниобия и титана и др., обладают свойством сохранять свою сверхпроводимость при больших значениях силы тока. Это позволило более широко использовать сверх­проводимость.