
- •1.1 Компоновка рэа. Классификация методов компоновки.
- •1.2. Производственный и тех процессы, их структура и элементы. Виды техпроцессов.
- •1.3 Задача конструкторской подготовки производства. Система технической подготовки производства
- •1.4 Алгоритм проектирования модуля рэа. Конструктивные и технологические характеристики печатных плат в сапр модулей рэа.
- •2.1 Методы конструирования рэа. Классификация методов
- •2.2 Производительность техпроцессов. Структура технической нормы времени. Выбор…
- •2.3 Анализ вопросов точности при конструировании и разработке технологии рэс. Предельный и вероятностный методы
- •2.4 Многокритериальная оценка эффективности рэс. Основные ттх и ттт к рэс. Этапы их разработки...
- •3.1 Порядок проведения и стадии нир и окр
- •3.2 Технологичность конструкции, основные виды, структура, показатели, методика расчета.
- •3.3 Виды аппаратуры контроля и диагностики. Основы классификации, краткие характеристики видов.
- •3.4 Современные сапр печатного монтажа. Программные средства для решения вспомогательных задач при проектировании печатных плат.
- •4.1 Стадии разработки кд. Основные участники нир и окр и их функциональные обязанности
- •4.2 Технологическое оснащение, виды, методика выбора и проектирование автоматизированного…
- •4.3 Градиентные методы поиска экстремума целевой ф-и.
- •4.4 Решение задачи размещения компонентов на печатной структуре. Функциональные возможности и алгоритмы модулей размещения современных сапр конструкторского типа
- •5.1 Виды изделий и кд. Комплектность кд
- •5.2 Субстрактивные методы изготовления пп: структура, базовые технологические операции, режимы, оборудование.
- •5.3 Методы контроля состояния кип на этапе эксплуатации. Характеристики этапов производства и эксплуатации с позиции организации контроля.
- •5.4 Интегральные критерии эффективности рэс. Его состав, правила и способы разработки. Стоимостный критерий.
- •6.1 Основные законы теплообмена. Критериальные уравнения.
- •6.2 Технология механических соединений: виды, особенности выполнения, применяемое оборудование.
- •6.3 Эксплуатация и основные этапы эксплуатации. Определения и задачи, решаемые при разработке теоретических основ эксплуатации…
- •7.1 Герметизация рэа. Выбор способа герметизации
- •7.2 Организационное и техническое проектирование автоматизированных поточных линий сборки рэс.
- •7.3 Законы распределения случайных величин.
- •8.1 Герметизация узлов и блоков рэа с помощью пайки, сварки, уплотнительной прокладки
- •8.2 Конструктивно-технологические характеристики печатных плат, их классификация, материалы для производства пп.
- •Классификация плат
- •Коммутационные платы:
- •Материалы для изготовления плат
- •Материалы:
- •Электронная система.
- •Программируемая (она же универсальная) электронная система.
- •9.1 Защита рэа от атмосферных воздействий. Герметизация рэа. Способы герметизации
- •9.2 Методика проектирования единичных техпроцессов. Технологическая документация.
- •9.3 Резисторная, диодная, транзисторная оптопара: параметры, принцип действия, область применения. Свойства оптоэлектронных коммутаторов.
- •10.1 Защита рэа от механических воздействий с помощью демпфирующих материалов. Оценка их эффективности
- •10.2 Аддитивные методы изготовления пп: структура, базовые, технологические операции, режимы, оборудование.
- •10.3 Характеристики и причины отказов рэс.
- •10.4 Разработка микропроцессорной системы на основе мк. Основные этапы разработки. Выбор типа мк
- •11.1 Защита рэу с помощью покрытий. Виды, характеристики, обозначение покрытий.
- •11.2 Технологические процессы изготовления плат на керамическом, металлическом и полиамидном основаниях.
- •11.3 Методы случайного поиска экстремума целевой функции.
- •12.1 Испарительное охлаждение. Термосифонный теплоотвод. Метод тепловых труб.
- •12.2 Многослойные пп: методы изготовления, структура технологических процессов, базовые тех.Операции, режимы их выполнения, применяемое оборудование. Контроль качества. Визуализация дефектов.
- •12.3 Организация разработки и изготовления киа. Этапы проектирования киа.
- •12.4 Приборы с зарядовой связью, принцип действия, режимы работы, область применения, достоинства и недостатки
- •13.1 Влагозащита рэу. Классификация методов влагозащиты.
- •13.2 Технологичность рэа. Показатели технологичности. Оценка технологичности изделия.
- •13.3 Классификация и регулярные методы поиска экстремума целевой функции.
- •13.4 Фильтр, фильтрация. Классификация и параметры фильтров. Маркировка и уго Принцип действия и недостатки аналоговых фильтров.. Дискретные фильтры: принцип действия, разновидности.
- •14.1 Классификация рэу по назначению, условиям эксплуатации.
- •14.2 Групповая монтажная пайка. Технологические основы процесса, методы и режимы выполнения, автоматизированное оборудование.
- •14.3 Место и роль технической подготовки в структуре предприятия. Организационное и техническое управление.
- •14.4 Типы акустических волн, преобразователи акустических волн. Характеристики и модели преобразователей.
- •15.1 Нормальный температурный режим эрэ изделия. Классификация систем охлаждения рэу
- •15.2 Монтажная сварка: технологические основы процесса, методы и режимы выполнения.
- •15.3 Критерии надежности
- •15.4 Кварцевые резонаторы и интегральные пьезокварцевые фильтры. Схема замещения кварцевого резонатора, применение кварцевых резонаторов.
- •16.1 Конструирование деталей, изготавливаемых гибкой, выдавкой, вытяжкой и отбортовкой.
- •16.2 Технологические основы накрутки: виды соединений, классификация методов, влияние режимов на характеристики соединений, оборудование, инструмент, автоматизация процесса.
- •16.3 Критерии проверки гипотез для принятия правильных решений при проектировании рэс
- •16.4 Принцип действия цифрового фильтра. Структурные схемы цф: сравнительные характеристики.
- •17.1 Конструирование деталей, изготавливаемых литьем, прессованием
- •17.3 Методы индивидуального статистического прогнозирования состояния.
- •17.4 Криогенная электроника: область применения, используемые эффекты, достоинства.
- •18.1 Конструирование печатных плат. Отверстия в печатных платах. Контактные площадки и проводники печатных плат.
- •18.2 Сборка типовых элементов на пп и мпп, классификация методов, технология выполнения, автоматизированное оборудование.
- •18.3 Показатели эффективности эксплуатации. Расчет эффективности эксплуатации
- •19.2 Проектирование производственных участков и цехов.
- •19.4 Хемотроника: определение, достоинсва, недостатки и разновидности хемотронных приборов.
- •20.1 Методы изготовления опп, дпп и мпп. Методы формирования рисунка.
- •20.2 Технология внутриблочного монтажа с помощью коммутационных плат (тканных, многопроводных).
- •20.3 Методы случайного поиска экстремума целевой функции.
- •20.4 Направления фукциональной электроники. Типы неоднородностей в уфэ, примеры.
- •21.1. Конструирование печатных узлов. Варианты установки навесных элементов.
- •21.2 Технология межблочного жгутового монтажа
- •21.3 Основные направления и способы прогнозирования
- •21.4 Фотоэлектрические преобразователи. Фоторезисторы. Материалы фоторезисторов. Кремниевые и германиевые фотодиоды. P–I–n, лавинный и гетерофотодиоды. Фототранзисторы.
- •22.1 Статический и динамический расчеты системы виброизоляции.
- •22.2 Технология монтажа на поверхности плат, основные варианты процессов. Особенности подготовки, сборки и монтажа.
- •Конструктивные:
- •22.3 Прогнозирование качества и состояния как метод повышения эксплуатационных показателей рэа
- •23.1 Общие требования к деталям, изготавливаемых сваркой. Виды сварки. Правила конструирования сварных соединений и выполнения чертежей сварных швов.
- •23.2 Технология защиты и герметизации рэс
- •23.3 Фильтры на пав: разновидности, области применения, особенности конструкции, аподизация, эквидистантность.
- •23.4 Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом.
- •24.1 Односторонние, двусторонние, многослойные, гибкие печатные платы. Особенности конструкций.
- •24.2 Контроль, диагностика неисправностей рэс, регулировка и технологическая тренировка.
- •24.3 Общие сведения о cad/cam/cae технологиях. Основные понятия и соответствие понятий сапр и cad/cam/cae-систем. Предмет и задачи сапр модулей рэа, назначение и области применения.
- •24.4 Индуктивные и трансформаторные преобразователи
- •25.1 Миниатюризация. Этапы развития миниатюризации. Показатели миниатюризации.
- •25.2 Технологические возможности различных методов механической обработки при изготовлении конструкционных деталей рэс и их влияние на свойства материалов.
- •25.3 Численность подразделения для обслуживания и разработки киа. Одновременная разработка и ее преимущества. Группы киа по назначению и применению в производстве.
- •25.4 Эффект Зеебека. Термоэлектрические преобразователи. Типы и виды термопар
- •26.1 Оценка вибропрочности и ударной прочности печатных плат. Виды амортизаторов, применяемых в рэа
- •26.2 Методы и технология получения деталей рэс литьем, обоснование выбора процесса в различных условиях производства.
- •26.3 Основные способы построения алгоритмов поиска неисправностей, их краткая характеристика. Обоснование выбора алгоритма, задачи при разработке алгоритмов поиска
- •1.Способ половинного разбиения.
- •2.Способ «время – вероятность».
- •3.Способ на основе информационного критерия
- •4.Инженерный способ.
- •5.Способ ветвей и границ.
- •26.4 Струнные и стержневые преобразователи. Режимы работы механических резонаторов
- •27.1 Постоянный и переменный ток в печатных проводниках. Сопротивление, емкость и индуктивность печатных проводников.
- •27.2 Технология изготовления деталей из ферритов. Особенности формирования деталей из керамики, стеклокерамики и металлических порошков.
- •27.4 Преобразователи с устройствами пространственного кодирования
- •28.1 Правила нанесения на чертежах надписей, технических требований, таблиц и предельных отклонений.
- •28.2 Технологические характеристики электрофизических и электрохимических методов обработки.
- •28.3 Полный факторный эксперимент. Дробный факторный эксперимент
- •28.4 Основные гальваномагнитные эффекты. Эффект Холла. Технология изготовления датчиков Холла
- •29.1 Влагозащита рэу монолитными оболочками.
- •29.2 Методы изготовления деталей из пластмасс, технология выполнения и оборудование.
- •29.3 Уровни и этапы проектирования рэс. Входящее и нисходящее проектирование
- •29.4 Применение гальваномагнитных преобразователей в средствах автоматизации.
- •30.1 Классификация воздушных систем охлаждения. Охлаждение стоек, шкафов, пультов с рэу.
- •30.2 Способы проведения двухстадийной диффузии
- •30.4 Технология изготовления интегральных тензопреобразователей (ит)
- •31.1 Способы охлаждения рэу. Выбор способа охлаждения на ранней стадии проектирования.
- •31.2 Ориентация полупроводниковых монокристаллических слитков. Механическая обработка полупроводниковых слитков и пластин.
- •31.3 Изучение закономерностей технологических процессов и конструкций на моделях. Основные требования к процессу моделирования. Виды моделей.
- •31.4 Классификация датчиков теплового потока. Физические модели «тепловых» датчиков теплового…
- •32.1 Структурные уровни конструкции рэа, как признак системности. Элементная база рэа.
- •32.2 Жидкостная и сухая обработка полупроводниковых пластин.
- •32.3 Теория игр и статистических решений. Правило игры, ход, стратегия. Оптимльная стратегия. Матрица игры. Принцип Минимакса.
- •32.4 Полевые транзисторы на основе арсенида галлия. Разновидности структур меп-транзисторов. Паразитная связь между элементами через полуизолирующую подложку.
- •33.1 Схема как кд. Правила выполнения схем электрических принципиальных и перечней элементов к ним
- •33.2 Технологическая подготовка производства рэа (тпп), ее основные задачи, положения и правила организации
- •33.4 Индукционные преобразователи. Эффект Фарадея
- •34.1 Конструкторская документация. Обозначение изделий и кд. Классификация кд.
- •34.2 Эпитаксиальное наращивание полупроводниковых слоев. Оборудование и оснастка для эпитаксии.
- •34.4 Воздействие влияющих факторов на датчики давления. Особенности эксплуатации и монтажа датчиков давления.
- •35.1 Требования к конструкции рэа по назначению, тактике использования и объекту установки
- •35.2 Фотолитографические процессы в технологии имс
- •5. Проявление
- •35.3 Связь надежности системы с надежностью составляющих ее элементов. Предупреждение надежности рэс. Резервирование.
- •35.4 Конструктивно-технологические варианты изоляции элементов микросхем друг от друга.
- •36.1 Особенности проектирования печатных плат для поверхностного монтажа.
- •36.2 Методы получения пленок в технологии гибридных имс. Термовакуумное испарение. Магнетронное испарение
- •36.3 Методы проектирования рэс. Требования, предъявляемые к процессу проектирования.
- •36.4 Конструктивно-технологические варианты изоляции элементов микросхем друг от друга.
- •37.1 Особенности конструирования лицевых панелей, пультов.
- •37.2 Толстопленочная технология изготовления имс
- •37.3 Система массового обслуживания. Элементы систем. Потоки. Характеристика очередей.
- •37.4 Конструктивно-технологичекие разновидности мдп-транзисторов.
- •38.1 Чертежи печатных плат, функциональных узлов. Спецификация.
- •38.2 Сборочно-монтажные операции при производстве имс. Герметизация имс.
- •38.3 Критерии оценки экономической эффективности кип. Расчетные коэффиценты и соотношения
- •38.4 Интегральные резисторы, интегральные конденсаторы.
- •39.1 Электрическая коммутация в герметичных корпусах. Окошечные, дисковые, глазковые, плоские соединения.
- •39.2 Ионное легирование полупроводников. Принцип действия установки ионного легирования.
- •39.4 Интегральные диоды. Разновидности. Стабилитроны. Диоды Шоттки.
- •40.1 Этапы развития конструкции рэа, их характеристики. Основные задачи современного (пятого) этапа развития конструкции рэа.
- •40.2 Конструкция. Система. Системный подход. Свойства конструкции рэс.
- •40.3 Градиентные методы поиска экстремума целевой функции: общая схема градиентного спуска
- •40.4 Полевые транзисторы с управляющим p-n переходом.
27.4 Преобразователи с устройствами пространственного кодирования
Устройства пространственного кодирования позволяют преобразовывать линейные и угловые перемещения в последовательность электрических импульсов, соответствующих параллельному или последовательному цифровому коду. Естественной входной величиной этих ПР является угловое и, значительно реже, линейное перемещение, а выходной —совокупность импульсных сигналов. Этими ПР наз. «угол-код». ПР «угол-код» работают по принципу одного отсчета и состоят их двух основных устройств: кодирующего устройства и вспомогательных электронных схем (усилительно-преобразующего устройства), предназначенных для считывания кода с чувствительных элементов, преобразования вых. кода (если в этом есть необходимость) и временного хранения выходного кода преобразователя. Кодирующее устройство (КУ), пространственного кодирования состоит из кодовой шкалы (маски кода) и системы съема (считывания) информации со шкалы (рис 2.32).
В
зависимости от разрешающей способности
КУ содержит определенное число кодовых
дорожек-разрядов. Кодовые шкалы, как
правило построены на использовании
масок двоичных кодов и поэтому содерж.
элементы шкалы, обладающие определенными
физическими признаками, отождествляемыми
со значениями единиц, и элементы с
обратными по отношению к первым
(противоположными) физическими
характеристиками; принимаемые за
значения нулей. ПР имеют один электрический
выход, если применяется последовательное
считывание кода, и сколько выходов (по
одному выходу каждый разряд) — при
параллельном считывании. В зависимости
от геометрии носителя кодовой маски ПР
«угол-код»
делятся на дисковые
и
барабанные.
ПР дискового
типа
имеют меньшие осевые размеры, на линейную
протяженность разрядных дорожек
оказывает влияние номер (вес) разряда,
что создает определенные технологические
трудности изготовлении ПР. Барабанные
ПР свободны указанного недостатка,
однако имеют большие габаритные размеры
и массу. По использованию различных
физических структур для формирования
КУ и взаимодействия их с чувствительными
элементами наиболее распространенные
ПР делятся на: 1)
гальванические (контактные)
— с кодирующими ус-вами, содержащие
проводящие и непроводящие участки шкалы
(ламели), и системы съема информации на
базе щеток; 2)
оптические
— с оптической связью между кодовым
устройством и системой съема,
содержащие КУ с прозрачными и непрозрачными
участками, источники и приемники световой
энергии; 3)
электромагнитные
— с магнитной связью между КУ и системой
съема, содержащие КУ, имеющее участки
носителя с различными магнитными
характеристиками. Частным случаем
широко распространенных электромагнитных
ПР «угол-код» являются ПР
трансформаторного типа,
КУ которых содержит участки с различной
магнитной проницаемостью. По наличию
механического контакта между
кодирующей системой (барабаном или
диском) и системой съема сигнала ПР
«угол-код» делятся на контактные и
бесконтактные. Число шкал (отдельных
КУ), используемых для формирования вых.
кода, определяет шкальность ПР.
Различают одношкальные
и многошкальные
ПР «угол-код».
В последних шкалы связываются между
собой с помощью редуктора. Многошкальные
ПР
исп. для повышения точности съема данных
при прим. КУ с низкой плотностью записи
информ. Основными метрологическими
характериками ПР «угол-код» являются
время одного ПР и точность преобразования.
Контактные
ПР «угол-код»
делятся на кулачковые,
барабанные и дисковые.
Кулачковые
ПР
имеют КУ, состоящее из набора кулачковых
шайб, жестко закрепленных на входной
оси ПР.
Дисковые
ПР.
Задающая система в этих ПР выполняется
в виде диска с нанесенным на него кодом
типа концентрических колец, составленных
из чередующихся электрически проводящих
и непроводящих участков. Достоинством
барабанных
и дисковых ПР
является высокая помехозащищённость
выходного кода, значительные уровни
вых. сигналов (до 10 В). Фотоэлектрические
ПР.
На сегодня имеют наиболее широкое
распространение из числа ПР «угол-код».
Это объясняется, во-первых, рядом
положительных качеств этих ПР (малые
моменты инерции и трения и т.д.) и,
во-вторых, тем, что благодаря разработке
совершенной технологии изготовления
элементов этих ПР удается добиться
при сравнительно небольших габаритах
высокой точности преобразования. В
фотоэлектрических ПР, как и в контактных
дисковых, в качестве задающей системы
используется кодовый диск. В качестве
чувствительных элементов применяются
фотоэлементы.
Электромагнитные
ПР «угол-код»
:К ним относятся индуктивные и
трансформаторные ПР, ПР с кольцевыми
ферритовыми чувствительными элементами
и емкостные ПР. В трансформаторных ПР
«угол-код» в основе принципа действия
системы съема кода лежит изменение
величины взаимоиндукции между первичной
и вторичной обмоткой чувствительного
элемента, причем магнитная цепь состоит
их двух ферромагнитных сердечников
(рис. 2.35), разделенных воздушным
зазором. Изменение коэффициента
взаимоиндукции между первичной и
вторичной обмотками достигается
благодаря перемещению магнитного экрана
внутри зазора между сердечниками.
Чувствительный элемент в трансформаторных ПР представляет собой пару идентичных катушек, выполненных на П–образных сердечниках из ферромагнитного материала (например, оксифера). Сердечники располагаются в одной плоскости с обеих сторон диска напротив соответствующего разрядного кольца точно друг против друга. На катушку опроса (КО) поступает опрашивающий импульс. При этом в зависимости от того, находиться ли в этот момент между катушками опроса и считывания воздушный зазор или материал диска, являющийся магнитным экраном, на выходе катушки считывания (КС) будет меняться амплитуда импульса. Если между катушками находиться материал диска, то в нем возникают вихревые токи, оказывающие размагничивающее действие, т.е. создающие поток, направленный навстречу основному потоку. При этом магнитное поле в обмотке считывания мало и сигнал на выходе значительно меньше, чем для случая, когда между половинками трансформатора находиться воздушный зазор. Большая амплитуда импульса определяет наличие единицы в данном разряде, а малая – наличие нуля. Зазор между сердечниками катушек выбирается минимально возможным, так как в этом случае представляется возможность повысить уровень сигнала на выходе катушек считывания или уменьшить размеры сердечников, а тем самым и диаметр диска, т.е. габаритные размеры устройства. Величина минимально возможного зазора определяется толщиной диска и возможной тщательностью выполнения устройства, толщина диска – его прочность. Выполняемые в настоящее время диски трансформаторных преобразователей имеют толщину 0,5…1 мм. Это позволяет обеспечить зазор между сердечником катушек 0,8…1,1 мм.
Трансформаторные преобразователи имеют меньшие моменты трения и инерции, чем все ранее рассмотренные, включая и фотоэлектрические типы преобразователей. Однако в трансформаторных преобразователях значительно труднее, чем в фотоэлектрических, обеспечит большое число разрядов при относительно небольших габаритных размерах, в силу чего они обычно выполняются многошкальными, причем каждая ступень имеет не более 7…8 двоичных разрядов.
Наиболее существенный недостаток преобразователей этого типа – малое отношение сигнал/шум, порядка 3…4.