
- •1.1 Компоновка рэа. Классификация методов компоновки.
- •1.2. Производственный и тех процессы, их структура и элементы. Виды техпроцессов.
- •1.3 Задача конструкторской подготовки производства. Система технической подготовки производства
- •1.4 Алгоритм проектирования модуля рэа. Конструктивные и технологические характеристики печатных плат в сапр модулей рэа.
- •2.1 Методы конструирования рэа. Классификация методов
- •2.2 Производительность техпроцессов. Структура технической нормы времени. Выбор…
- •2.3 Анализ вопросов точности при конструировании и разработке технологии рэс. Предельный и вероятностный методы
- •2.4 Многокритериальная оценка эффективности рэс. Основные ттх и ттт к рэс. Этапы их разработки...
- •3.1 Порядок проведения и стадии нир и окр
- •3.2 Технологичность конструкции, основные виды, структура, показатели, методика расчета.
- •3.3 Виды аппаратуры контроля и диагностики. Основы классификации, краткие характеристики видов.
- •3.4 Современные сапр печатного монтажа. Программные средства для решения вспомогательных задач при проектировании печатных плат.
- •4.1 Стадии разработки кд. Основные участники нир и окр и их функциональные обязанности
- •4.2 Технологическое оснащение, виды, методика выбора и проектирование автоматизированного…
- •4.3 Градиентные методы поиска экстремума целевой ф-и.
- •4.4 Решение задачи размещения компонентов на печатной структуре. Функциональные возможности и алгоритмы модулей размещения современных сапр конструкторского типа
- •5.1 Виды изделий и кд. Комплектность кд
- •5.2 Субстрактивные методы изготовления пп: структура, базовые технологические операции, режимы, оборудование.
- •5.3 Методы контроля состояния кип на этапе эксплуатации. Характеристики этапов производства и эксплуатации с позиции организации контроля.
- •5.4 Интегральные критерии эффективности рэс. Его состав, правила и способы разработки. Стоимостный критерий.
- •6.1 Основные законы теплообмена. Критериальные уравнения.
- •6.2 Технология механических соединений: виды, особенности выполнения, применяемое оборудование.
- •6.3 Эксплуатация и основные этапы эксплуатации. Определения и задачи, решаемые при разработке теоретических основ эксплуатации…
- •7.1 Герметизация рэа. Выбор способа герметизации
- •7.2 Организационное и техническое проектирование автоматизированных поточных линий сборки рэс.
- •7.3 Законы распределения случайных величин.
- •8.1 Герметизация узлов и блоков рэа с помощью пайки, сварки, уплотнительной прокладки
- •8.2 Конструктивно-технологические характеристики печатных плат, их классификация, материалы для производства пп.
- •Классификация плат
- •Коммутационные платы:
- •Материалы для изготовления плат
- •Материалы:
- •Электронная система.
- •Программируемая (она же универсальная) электронная система.
- •9.1 Защита рэа от атмосферных воздействий. Герметизация рэа. Способы герметизации
- •9.2 Методика проектирования единичных техпроцессов. Технологическая документация.
- •9.3 Резисторная, диодная, транзисторная оптопара: параметры, принцип действия, область применения. Свойства оптоэлектронных коммутаторов.
- •10.1 Защита рэа от механических воздействий с помощью демпфирующих материалов. Оценка их эффективности
- •10.2 Аддитивные методы изготовления пп: структура, базовые, технологические операции, режимы, оборудование.
- •10.3 Характеристики и причины отказов рэс.
- •10.4 Разработка микропроцессорной системы на основе мк. Основные этапы разработки. Выбор типа мк
- •11.1 Защита рэу с помощью покрытий. Виды, характеристики, обозначение покрытий.
- •11.2 Технологические процессы изготовления плат на керамическом, металлическом и полиамидном основаниях.
- •11.3 Методы случайного поиска экстремума целевой функции.
- •12.1 Испарительное охлаждение. Термосифонный теплоотвод. Метод тепловых труб.
- •12.2 Многослойные пп: методы изготовления, структура технологических процессов, базовые тех.Операции, режимы их выполнения, применяемое оборудование. Контроль качества. Визуализация дефектов.
- •12.3 Организация разработки и изготовления киа. Этапы проектирования киа.
- •12.4 Приборы с зарядовой связью, принцип действия, режимы работы, область применения, достоинства и недостатки
- •13.1 Влагозащита рэу. Классификация методов влагозащиты.
- •13.2 Технологичность рэа. Показатели технологичности. Оценка технологичности изделия.
- •13.3 Классификация и регулярные методы поиска экстремума целевой функции.
- •13.4 Фильтр, фильтрация. Классификация и параметры фильтров. Маркировка и уго Принцип действия и недостатки аналоговых фильтров.. Дискретные фильтры: принцип действия, разновидности.
- •14.1 Классификация рэу по назначению, условиям эксплуатации.
- •14.2 Групповая монтажная пайка. Технологические основы процесса, методы и режимы выполнения, автоматизированное оборудование.
- •14.3 Место и роль технической подготовки в структуре предприятия. Организационное и техническое управление.
- •14.4 Типы акустических волн, преобразователи акустических волн. Характеристики и модели преобразователей.
- •15.1 Нормальный температурный режим эрэ изделия. Классификация систем охлаждения рэу
- •15.2 Монтажная сварка: технологические основы процесса, методы и режимы выполнения.
- •15.3 Критерии надежности
- •15.4 Кварцевые резонаторы и интегральные пьезокварцевые фильтры. Схема замещения кварцевого резонатора, применение кварцевых резонаторов.
- •16.1 Конструирование деталей, изготавливаемых гибкой, выдавкой, вытяжкой и отбортовкой.
- •16.2 Технологические основы накрутки: виды соединений, классификация методов, влияние режимов на характеристики соединений, оборудование, инструмент, автоматизация процесса.
- •16.3 Критерии проверки гипотез для принятия правильных решений при проектировании рэс
- •16.4 Принцип действия цифрового фильтра. Структурные схемы цф: сравнительные характеристики.
- •17.1 Конструирование деталей, изготавливаемых литьем, прессованием
- •17.3 Методы индивидуального статистического прогнозирования состояния.
- •17.4 Криогенная электроника: область применения, используемые эффекты, достоинства.
- •18.1 Конструирование печатных плат. Отверстия в печатных платах. Контактные площадки и проводники печатных плат.
- •18.2 Сборка типовых элементов на пп и мпп, классификация методов, технология выполнения, автоматизированное оборудование.
- •18.3 Показатели эффективности эксплуатации. Расчет эффективности эксплуатации
- •19.2 Проектирование производственных участков и цехов.
- •19.4 Хемотроника: определение, достоинсва, недостатки и разновидности хемотронных приборов.
- •20.1 Методы изготовления опп, дпп и мпп. Методы формирования рисунка.
- •20.2 Технология внутриблочного монтажа с помощью коммутационных плат (тканных, многопроводных).
- •20.3 Методы случайного поиска экстремума целевой функции.
- •20.4 Направления фукциональной электроники. Типы неоднородностей в уфэ, примеры.
- •21.1. Конструирование печатных узлов. Варианты установки навесных элементов.
- •21.2 Технология межблочного жгутового монтажа
- •21.3 Основные направления и способы прогнозирования
- •21.4 Фотоэлектрические преобразователи. Фоторезисторы. Материалы фоторезисторов. Кремниевые и германиевые фотодиоды. P–I–n, лавинный и гетерофотодиоды. Фототранзисторы.
- •22.1 Статический и динамический расчеты системы виброизоляции.
- •22.2 Технология монтажа на поверхности плат, основные варианты процессов. Особенности подготовки, сборки и монтажа.
- •Конструктивные:
- •22.3 Прогнозирование качества и состояния как метод повышения эксплуатационных показателей рэа
- •23.1 Общие требования к деталям, изготавливаемых сваркой. Виды сварки. Правила конструирования сварных соединений и выполнения чертежей сварных швов.
- •23.2 Технология защиты и герметизации рэс
- •23.3 Фильтры на пав: разновидности, области применения, особенности конструкции, аподизация, эквидистантность.
- •23.4 Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом.
- •24.1 Односторонние, двусторонние, многослойные, гибкие печатные платы. Особенности конструкций.
- •24.2 Контроль, диагностика неисправностей рэс, регулировка и технологическая тренировка.
- •24.3 Общие сведения о cad/cam/cae технологиях. Основные понятия и соответствие понятий сапр и cad/cam/cae-систем. Предмет и задачи сапр модулей рэа, назначение и области применения.
- •24.4 Индуктивные и трансформаторные преобразователи
- •25.1 Миниатюризация. Этапы развития миниатюризации. Показатели миниатюризации.
- •25.2 Технологические возможности различных методов механической обработки при изготовлении конструкционных деталей рэс и их влияние на свойства материалов.
- •25.3 Численность подразделения для обслуживания и разработки киа. Одновременная разработка и ее преимущества. Группы киа по назначению и применению в производстве.
- •25.4 Эффект Зеебека. Термоэлектрические преобразователи. Типы и виды термопар
- •26.1 Оценка вибропрочности и ударной прочности печатных плат. Виды амортизаторов, применяемых в рэа
- •26.2 Методы и технология получения деталей рэс литьем, обоснование выбора процесса в различных условиях производства.
- •26.3 Основные способы построения алгоритмов поиска неисправностей, их краткая характеристика. Обоснование выбора алгоритма, задачи при разработке алгоритмов поиска
- •1.Способ половинного разбиения.
- •2.Способ «время – вероятность».
- •3.Способ на основе информационного критерия
- •4.Инженерный способ.
- •5.Способ ветвей и границ.
- •26.4 Струнные и стержневые преобразователи. Режимы работы механических резонаторов
- •27.1 Постоянный и переменный ток в печатных проводниках. Сопротивление, емкость и индуктивность печатных проводников.
- •27.2 Технология изготовления деталей из ферритов. Особенности формирования деталей из керамики, стеклокерамики и металлических порошков.
- •27.4 Преобразователи с устройствами пространственного кодирования
- •28.1 Правила нанесения на чертежах надписей, технических требований, таблиц и предельных отклонений.
- •28.2 Технологические характеристики электрофизических и электрохимических методов обработки.
- •28.3 Полный факторный эксперимент. Дробный факторный эксперимент
- •28.4 Основные гальваномагнитные эффекты. Эффект Холла. Технология изготовления датчиков Холла
- •29.1 Влагозащита рэу монолитными оболочками.
- •29.2 Методы изготовления деталей из пластмасс, технология выполнения и оборудование.
- •29.3 Уровни и этапы проектирования рэс. Входящее и нисходящее проектирование
- •29.4 Применение гальваномагнитных преобразователей в средствах автоматизации.
- •30.1 Классификация воздушных систем охлаждения. Охлаждение стоек, шкафов, пультов с рэу.
- •30.2 Способы проведения двухстадийной диффузии
- •30.4 Технология изготовления интегральных тензопреобразователей (ит)
- •31.1 Способы охлаждения рэу. Выбор способа охлаждения на ранней стадии проектирования.
- •31.2 Ориентация полупроводниковых монокристаллических слитков. Механическая обработка полупроводниковых слитков и пластин.
- •31.3 Изучение закономерностей технологических процессов и конструкций на моделях. Основные требования к процессу моделирования. Виды моделей.
- •31.4 Классификация датчиков теплового потока. Физические модели «тепловых» датчиков теплового…
- •32.1 Структурные уровни конструкции рэа, как признак системности. Элементная база рэа.
- •32.2 Жидкостная и сухая обработка полупроводниковых пластин.
- •32.3 Теория игр и статистических решений. Правило игры, ход, стратегия. Оптимльная стратегия. Матрица игры. Принцип Минимакса.
- •32.4 Полевые транзисторы на основе арсенида галлия. Разновидности структур меп-транзисторов. Паразитная связь между элементами через полуизолирующую подложку.
- •33.1 Схема как кд. Правила выполнения схем электрических принципиальных и перечней элементов к ним
- •33.2 Технологическая подготовка производства рэа (тпп), ее основные задачи, положения и правила организации
- •33.4 Индукционные преобразователи. Эффект Фарадея
- •34.1 Конструкторская документация. Обозначение изделий и кд. Классификация кд.
- •34.2 Эпитаксиальное наращивание полупроводниковых слоев. Оборудование и оснастка для эпитаксии.
- •34.4 Воздействие влияющих факторов на датчики давления. Особенности эксплуатации и монтажа датчиков давления.
- •35.1 Требования к конструкции рэа по назначению, тактике использования и объекту установки
- •35.2 Фотолитографические процессы в технологии имс
- •5. Проявление
- •35.3 Связь надежности системы с надежностью составляющих ее элементов. Предупреждение надежности рэс. Резервирование.
- •35.4 Конструктивно-технологические варианты изоляции элементов микросхем друг от друга.
- •36.1 Особенности проектирования печатных плат для поверхностного монтажа.
- •36.2 Методы получения пленок в технологии гибридных имс. Термовакуумное испарение. Магнетронное испарение
- •36.3 Методы проектирования рэс. Требования, предъявляемые к процессу проектирования.
- •36.4 Конструктивно-технологические варианты изоляции элементов микросхем друг от друга.
- •37.1 Особенности конструирования лицевых панелей, пультов.
- •37.2 Толстопленочная технология изготовления имс
- •37.3 Система массового обслуживания. Элементы систем. Потоки. Характеристика очередей.
- •37.4 Конструктивно-технологичекие разновидности мдп-транзисторов.
- •38.1 Чертежи печатных плат, функциональных узлов. Спецификация.
- •38.2 Сборочно-монтажные операции при производстве имс. Герметизация имс.
- •38.3 Критерии оценки экономической эффективности кип. Расчетные коэффиценты и соотношения
- •38.4 Интегральные резисторы, интегральные конденсаторы.
- •39.1 Электрическая коммутация в герметичных корпусах. Окошечные, дисковые, глазковые, плоские соединения.
- •39.2 Ионное легирование полупроводников. Принцип действия установки ионного легирования.
- •39.4 Интегральные диоды. Разновидности. Стабилитроны. Диоды Шоттки.
- •40.1 Этапы развития конструкции рэа, их характеристики. Основные задачи современного (пятого) этапа развития конструкции рэа.
- •40.2 Конструкция. Система. Системный подход. Свойства конструкции рэс.
- •40.3 Градиентные методы поиска экстремума целевой функции: общая схема градиентного спуска
- •40.4 Полевые транзисторы с управляющим p-n переходом.
22.3 Прогнозирование качества и состояния как метод повышения эксплуатационных показателей рэа
Прогнозировать событие - значит, предвидеть, предсказать будущее событие на основании изучения таких факторов, от которых оно зависит или которые ему сопутствуют. Научное прогнозирование основывается на изучении объективных закономерностей, которым подчиняются интересующие нас процессы и события. При этом используются две группы закономерностей: 1.закономерности случайных событий или вероятностные (стохастические); 2. закономерности детерминированные. При прогнозировании события можно выделить два характерных подхода к решению поставленной задачи: 1) прогнозирование будущего состояния данного события на основании изучения закономерности изменения данного события; 2) прогнозирование будущего состояния данного события на основании изучения другого события (или группы других событий), связанного с данным.
Прогнозирование состояния и качества осуществляют на различных стадиях создания и использования изделий: на стадии проектирования, производства и эксплуатации. На стадии проектирования прогнозирование применяют при решении вопросов совершенствования конструкции изделий, выбора оптимальных режимов технологии, подбора дискретных элементов, определения требований по надежности и т.д. На стадии производства прогнозирование применяют для целей управления технологическими процессами, для отбраковки потенциально ненадежных изделий на отдельных технологических операциях, отбора изделий повышенной надежности, оценки и контроля надежности и пр. На стадии эксплуатации прогнозирование применяют для обоснования сроков проведения профилактических работ, определения ЗИП, оценки остаточного ресурса и т.п. Все эти мероприятия позволяют создавать конструкции, которые наилучшим образом удовлетворяют предполагаемым условиям работы своевременно предупредить отказы и применить такие рабочие условия и условия обслуживания изделий, которые наилучшим образом отвечают задаче обеспечения заданной надежности и эффективности.
22.4 Принципы преобразования в волоконно-оптических датчиках физических величин Амплитудные волоконно-оптические датчики. Оптическое мультиплексирование волоконно-оптических датчиков физических величин.
По принципу действия все вол.–опт. датчики делятся на четыре класса в соответствии с тем, какой из параметров оптической волны, E=Empexp(t+) распр-ся по волокну, исп. для получения инфо об измеряемом физ. возд.: Em – амплитуда эл. поля, фаза φ, состояние или направление поляризации эл. вектора р, или частота ω.
Принцип действия ВОД: Оптическое излучение от ист. проходит через передающий оптич. канал на чувствит. элемент (ЧЭ), нах-ся под возд. измеряемой величины. В рез-те физ. возд. оптические свойства ЧЭ изменяются, что приводит к изменению параметров оптич. излучения. Далее преобразованное оптическое излучение через приемный оптический канал поступает на регистрирующее устройство.
В основу классиф. ВОД положено различие оптических схем модуляции света, фазовой модуляции света (интерференционные), поляризационные датчики, частотные датчики.
Амплитудные ВОД данного типа можно разделить на два класса: отражательные и проходные. С точки зрения функц. особенностей разработаны датчики с оптическим преобразователем на конце волокна и датчики, в которых оптическое волокно исп. только в качестве зонда, подводящего и отводящего оптич. излучение от исслед. объекта.
Примером первого типа являются датчики тем-ры с закрепленной на торце волокна пленкой п/п-го материала с зеркалом, поглощение света в которой измен. от темп-ры; датчики давления, перемещения, тем-ры на основе закрепленной на торце волокна мембраны. Примером второго типа являются датчики для наблюдения фотолюминесценции или отражательной способности какого-либо объекта. С конструктивной точки зрения ВОД отражательного типа могут быть вып. как одноволоконные с разветвителем, так и двухволоконные, а также на основе жгута оптических волокон.
Для получения хорошей стабильности и чувствительности применяется двухканальная схема или схема со светодиодами, работающими на двух длинах волн: измерительной и опорной.
А
мплитудным
ВОД
физ. величин присущ общий недостаток,
закл. в слабой устойчивости измерит.
инфо к дестабилиз. возд. Колебания
интенсивности излучения, вызв. изменениями
мощности излучателя, чувствительности
фотоприемника или потерь подводящих
световодов, восприним. как полезный
сигнал. Влияют на х-ки элементов ВОД
мех. воздействия, вызванные вибрациями,
ударами, колебаниями давления. Механич.
напряжения в кристаллах и эл-ах конструкций
п/п-ых излучателей приводят к нестабильности
мощности излучения примерно 0,8…5%.
1 – источник оптического излучения; 2 – фотоприемник; 3 – волоконно-оптический разветвитель; 4, 7 – зеркала (опорного канала и измерительного); 5 – отрезок оптического волокна;
6 – преобразователь отражательного типа; 8, 8’ – полосовые электронные фильтры; 9 – измеритель отражения сигналов
Поэтому для улуч. х-к амплитудные ВОД строят по дифференц. схемам. Однако даже это не позвол. получить погрешность измерений менее 0,1% и динамический диапазон порядка 104.
К достоинству амплитудных ВОД можно отнести миниатюрность чувствительного элемента и удобство преобразования измеряемых воздействий.
В мультиплексной схеме предполагается исп. только одну ВОЛС, связывающую датчики с одним источником и приемником излучения. Тогда можно достичь значит. экономии в энергопотреблении и стоимости элементной базы за счет ум. числа ВОЛС, источников и приемников излучения.
Одним из перспективных методов мультиплексирования ВОД является метод когерентной частотной рефлектометрии. Он позволяет улучш. чувствительность фотоприемника излучения за счет гетеродинного или гомодинного приема излучения, возрастает чувствительность отдельных ВОД, обусл. применением интерференционных м-ов излучения физ. величин.
В этом методе чувствительные элементы предст. собой участки одномодового световода, расп. между отражателями с малым коэфф. отражения. При измен. частоты излучения лазера по линейному закону отклик фотоприемника на отраж. сигнал предст. собой суперпозицию гармон. сост., частота которых пропорциональна запаздыванию отраженных волн, амплитуда – амплитуде этих волн, а фаза опред. фазовой задержкой в световоде. Измерив разность фаз в гармонических составляющих сигнала, соответствующих отражению от двух соседних отражателей, можно определить фазовую задержку излучения в расположенном между ними световоде.
В методе когерентной частотной рефлектометрии положение каждого датчика кодируется своей частотой, поэтому длины световодов в датчиках могут быть выбраны независимо.
Так как отклик фотоприемника пропорционален амплитудному коэффициенту отражения, то, используя отражатели с малым коэффициентом отражения, можно уменьшить перекрестные помехи, обусловленные многократными переотражениями в световоде.
При этом методе число мультиплексируемых ВОД может достигать несколько десятков при достаточно высоком уровне отношения сигнала к шуму в системе.