
- •Оглавление
- •Глава 1. Основные понятия………………………………………………….……………….6
- •Глава 2. Координаты и преобразования…………………………………………………...13
- •Глава 3. Растровая графика. Базовые растровые алгоритмы……………………… 37
- •Глава 4. Векторная графика…………………………………………………………….…..78
- •Глава 5. Фрактальная графика……………………………………………………………..91
- •Глава 6. Цветовые модели компьютерной графики………………………………….…97
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов……. 137
- •Глава 9. Архитектуры графических систем …………………………………………. 181
- •Глава 10. Стандартизация в компьютерной графике……………………………….….189
- •Глава 11. Форматы графических файлов……………………………………………..…205
- •Глава 1. Основные понятия
- •1.1 Разновидности компьютерной графики
- •Полиграфия
- •Мультимедиа
- •Сапр и деловая графика
- •Пользо-
- •Геоинформационные системы (гис)
- •1.2. Принципы организации графических программ
- •Растровые программы
- •Векторные программы
- •Фрактальные программы
- •Глава 2. Координаты и преобразования
- •2.1 Координатный метод
- •2.1.1. Преобразование координат
- •Простейшие двумерные преобразования
- •Однородные координаты и матричное представление двумерных преобразований
- •Композиция двумерных преобразований
- •Матричное представление трехмерных преобразований
- •Композиция трехмерных преобразований
- •Преобразование объектов
- •Преобразование как изменение систем координат
- •Проекции
- •Мировые и экранные координаты
- •Основные типы проекций
- •Глава 3. Растровая графика. Базовые растровые алгоритмы
- •3.1 Растровые изображения и их основные характеристики
- •Вывод изображений на растровые устройства
- •Методы улучшения растровых изображений
- •Устранение ступенчатого эффекта
- •Дизеринг
- •Диагональное расположение ячеек 5x5
- •Диагональные структуры: а - сдвиг строк ячеек, б - ячейки другого типа
- •Набор чм-ячеек 5x5
- •3.4. Базовые растровые алгоритмы Алгоритмы вывода прямой линии
- •Инкрементные алгоритмы
- •Кривая Безье
- •Алгоритмы вывода фигур
- •Алгоритмы закрашивания
- •Стиль заполнения
- •Инструменты растровых графических пакетов
- •Инструменты выделения. Каналы и маски
- •Выделение
- •Инструменты выделения и маскирования
- •Гистограммы
- •Тоновая коррекция изображения
- •Уровни (Levels)
- •Цветовая коррекция и цветовой баланс
- •Фильтры (Plug-ins) и спецэффекты (Effects)
- •Преимущества и недостатки растровой графики
- •Глава 4. Векторная графика
- •Средства создания векторных изображений
- •Математические основы векторной графики
- •Достоинства и недостатки векторной графики
- •Глава 5. Фрактальная графика
- •Математика фракталов. Алгоритмы фрактального сжатия изображений
- •Обзор основных фрактальных программ
- •Глава 6. Цветовые модели компьютерной графики
- •6.1 Элементы цвета
- •Свет и цвет
- •Физическая природа света и цвета
- •Излученный и отраженный свет
- •Яркостная и цветовая информация
- •Цвет и окраска
- •Характеристики источника света
- •Стандартные источники
- •Особенности восприятия цвета человеком
- •Колбочки и палочки
- •Спектральная чувствительность глаза к яркости
- •Спектральная чувствительность наблюдателя
- •Цветовой и динамический диапазоны
- •Типы цветовых моделей
- •Аддитивные цветовые модели
- •Почему rgb-модель нравится компьютеру?
- •Ограничения rgb-модели
- •SRgb — стандартизированный вариант rgb-цветового пространства
- •Субтрактивные цветовые модели
- •Цветовая модель cmy
- •Ограничения модели cmyk
- •Возможности расширения цветового охвата cmyk
- •Технология HiFi Color
- •Использование плашечных цветов
- •Перцепционные цветовые модели
- •Достоинства и ограничения hsb-модели
- •Системы соответствия цветов и палитры
- •Системы соответствия цветов
- •Назначение эталона
- •Кодирование цвета. Палитра
- •Триадные и плашечные цвета
- •Цветовые режимы
- •Глава 10. Стандартизация в компьютерной графике
- •Международная деятельность по стандартизации в машинной графике
- •Деятельность iso, iec по стандартизации в машинной графике
- •Классификация стандартов
- •Графические протоколы
- •Аппаратно-зависимые графические протоколы
- •Протокол tektronix
- •Протокол regis
- •Протокол hp-gl
- •Языки описания страниц
- •Язык PostScript
- •Язык pcl
- •Аппаратно-независимые графические протоколы
- •Проблемно-ориентированные протоколы
Субтрактивные цветовые модели
В отличие от экрана монитора, воспроизведение цветов которого основано на из-
лучении света, печатная страница может только отражать цвет. Поэтому RGB-модель в данном случае неприемлема. Вместо нее для описания печатных цветов используется модель CMY, базирующаяся на субтрактивных цветах (рис. 6.24).
Субтрактивные цвета в отличие от аддитивных цветов (той же RGB-модели) по-
лучаются вычитанием вторичных цветов из общего луча света. В этой системе белый цвет появляется как результат отсутствия всех цветов, тогда как их присутствие дает черный цвет.
Рис. 6.24. Субтрактивная цветовая модель CMY
В последнее время в качестве синонима термина «субтрактивная» иногда исполь- зуют термин «исключающая». Происхождение этого названия связано с явлением отражения света от покрытой красителем поверхности, а также с тем фактом, что при добавлении красителей интенсивность света уменьшается, поскольку свет
поглощается тем больше, чем больше красителя нанесено на поверхность.
Нанесение на бумагу трех базовых цветов: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow) позволяет создать множество субтрактивных цветов.
Физические процессы, лежащие в основе субтрактивного синтеза цвета, были рас- смотрены ранее в разделе «Излученный и отраженный цвет» главы 2, «Основы работы с
цветом». Поэтому здесь мы коснемся только некоторых деталей, позволяющих уточнить практические нюансы использования этой модели. Для этого нам потребуется записать
соотношения, связывающие аддитивные (красный, зеленый, синий) и субтрактивные (голубой, желтый, пурпурный) цвета:
Зеленый + Синий = Голубой; Зеленый + Красный = Желтый;
Красный + Синий = Пурпурный; Зеленый + Синий + Красный = Белый;
Голубой + Желтый + Пурпурный = Черный.
Итак, что же происходит, когда на лист бумаги с нанесенным на него красителем
падает белый свет? Если краситель голубой (сине-зеленый), то он поглощает из спектра красный цвет и отражает голубой. Соответственно пурпурный краситель поглощает комплиментарный ему зеленый цвет, а желтый краситель — синий цвет. Если при печати наложить друг на друга пурпурный и желтый цвета, то получится красный цвет, поскольку пурпурный краситель устранит зеленую составляющую, а желтый — синюю составляющую падающего цвета. Соответственно при печати с наложением всех трех субтрактивных цветов результирующий цвет будет черным.
На базе выполненных рассуждений можно сформулировать правило коррекции
цветового разбаланса при цветной печати: если изображение имеет излишне синий оттенок, то следует увеличить желтую составляющую, поскольку желтый поглощает синие составляющие. Соответственно избыточность зеленого цвета можно скорректировать увеличением пурпурной составляющей, а избыточность красного цвета
увеличением голубой составляющей.
Цветовая модель cmy
Используется для описания цвета при получении изображений на устройствах, которые реализуют принцип ппоглощения цветов. В первую очередь, она используется в
устройствах, которые печатают на бумаге. Название данной модели состоит из названий основных субтрактивных цветов:голубого (Cyan), пурпурного (Magenta) и желтого
Рис. 6.25. Цветовая модель CMY - поглощение (вычитание) цветов)
Нанесение желтой краски на белую бумагу означает, что поглощается отраженный синий цвет. Голубая краска поглощает красный цвет. Пурпурная краска — зеленый. Комби-нированне красок позволяет получить цвета, которые остались — зеленый, красный, синий и черный. Черный соответствует поглощению всех цветов при отражении.
На практике добиться черного смешиванием сложно из-за нендеальности красок, поэтому в принтерах используют еще и краску черного цвета (black). Тогда модель называется CMYK, Необходимо также отметить, что не всякие краски обеспечивают указанное выше вычитание цветов CMY.
В таблице 6.1 для сравнения представим описание некоторых цветов в моделях RGB и CMY.
Таблица 6.1. Описание цветов в моделях RGB и CMY
Цвет |
Модель RGB |
Модель CMY |
||||
R |
G |
B |
C |
M |
Y |
|
Красный |
1 |
0 |
0 |
0 |
1 |
1 |
Желтый |
1 |
1 |
0 |
0 |
0 |
1 |
Ярко-Зеленый |
0 |
1 |
0 |
1 |
0 |
1 |
Голубой |
0 |
1 |
1 |
1 |
0 |
0 |
Синий |
0 |
0 |
1 |
1 |
1 |
0 |
Пурпурный |
1 |
0 |
1 |
0 |
1 |
0 |
Черный |
0 |
0 |
0 |
1 |
1 |
1 |
Белый |
1 |
1 |
1 |
0 |
0 |
0 |
Соотношение для перекодировки цвета из модели CMY в RBG:
r 1 c
g 1 m
b 1 y
Здесь считается, что компоненты кодируются числами в диапозоне от 0 до 1. Для другого диапозона чисел можно записать соответствующие обратное соотношение.
CMY и CMYK
Существуют две наиболее распространенные версии субтрактивной модели: CMY
и CMYK. Первая из них используется в том случае, если изображение или рисунок будут выводиться на черно-белом принтере, позволяющем заменять черный картридж на цветной (color upgrade). В ее основе лежит использование трех субтрактивных (вторичных) цветов: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Теоретически при смешивании этих цветов на белой бумаге в равной пропорции получается черный цвет.
Однако в реальном технологическом процессе получение черного цвета путем сме-
шивания трех основных цветов для бумаги неэффективно по трем причинам.
Невозможно произвести идеально чистые пурпурные, синие и желтые краски. Поэтому
цвет получается не чисто черным, а грязно-коричневым.
На создание черного цвета с помощью модели CMY тратится в три раза больше
краски.
В силу перечисленных факторов при печати чистого черного цвета используется
добавка дополнительной черной компоненты цвета. Эта технология приводит также к улучшению качества теней и серых оттенков. Интенсивность каждой из четырех компонент цвета может изменяться в диапазоне от 0 до 100 %.
В аббревиатуре модели CMYK используется буква «К» (последняя буква слова Black) для того, чтобы избежать путаницы, поскольку в английском языке с буквы «В» начинается не только слово Black (черный), но и слово Blue (синий). Встречается еще один вариант трактовки использования этой буквы как аббревиатуры термина Key color (ключевой цвет).