
- •Введение
- •Раздел 1.
- •Тема 1.1 Введение. Радиоэлектронная аппаратура. Элемент. Компонент. Понятие и функции. Сигналы и их виды. Конструкция. Конструирование и технология средств медицинской электроники.
- •Основные функции, выполняемые на основе обработки сигналов различными устройствами
- •Развитие элементной базы рэа.
- •Гибкие автоматизированные производительные системы (гапс)
- •Тема 1.2 Особенности автоматизированного проектирования эрэ и уфэ Основные этапы проектирования изделий электронной техники
- •Требования к общему техническому заданию
- •Тема 1.3 Состав элементной базы смэ Функциональная электроника
- •Тема 1.4 Интегральные микросхемы, как одна из составляющих частей рэа
- •Раздел 2. Конденсаторы, резисторы, катушки индуктивности, трансформаторы и lc-фильтры
- •Тема 2.1 Резисторы
- •Основные параметры
- •Высокомегаомные и высоковольтные резисторы. Резисторы специального назначения
- •Тема 2.2 конденсаторы Классификация и конструкции
- •Основные параметры
- •Высокочастотные конденсаторы постоянной ёмкости
- •Низкочастотные конденсаторы постоянной емкости
- •Воздушные конденсаторы переменной емкости
- •Полупеременные конденсаторы. Конденсаторы специального назначения
- •Конденсаторы интегральных микросхем
- •Тема 2.3 Катушки индуктивности, дроссели и трансформаторы
- •Природа индуктивности и классификация катушек индуктивности
- •Стабильность катушек без сердечника
- •Катушки индуктивности с сердечниками
- •Свойства катушек индуктивности при длительном функционировании
- •Перспективы развития и использования катушек индуктивности в рэа
- •Катушки связи
- •Катушки индуктивности для гибридных интегральных схем
- •Дроссели
- •Низкочастотные дроссели
- •Применение дискретных конденсаторов, резисторов и катушек индуктивности в рэа
- •Тема 2.4 пассивные lc-фильтры и активные rc-фильтры
- •Электромеханические и пьезоэлектрические фильтры
- •Активные фильтры
- •Краткие сведения о принципах действия дискретных и цифровых фильтров
- •Раздел 3 акустоэлектроника
- •Тема 3.1. Акустоэлектронные приборы
- •Тема 3.2 линии задержки на поверхностных акустических волнах Модуляторы, дефлекторы, фильтры, процессоры, генератоы. Усилители и фазовозвращатели.
- •Конструирование преобразователей фильтров на пав.
- •Раздел 4. Оптоэлектронные устройства и устройства отображения информации.
- •Тема 4.1 Основы оптоэлектроники. Классификация оптоэлектронных устройств.
- •Тема 4.2 элементы оптоэлетронных устройств
- •Оптоэлектронные приборы
- •Раздел 5. Устройства на приборах с зарядовой связью (пзс).
- •Тема 5.1. Принципы построения и действия пзс.
- •Тема 5.2 пзс в устройствах обработки сигналов памяти и приемниках изображения.
- •Тема 5.3. Приборы на эффекте ганна
- •Тема 5.4. Диэлектрическая электроника :
- •Основные направления функциональной микроэлектроники
- •Магнитоэлектронные приборы
- •Раздел 6. Криотроны, хемотроны и другие смэ.
- •Тема 6.1. Криотроны и другие устройства на основе сверхпроводимости.
- •Криоэлектронные приборы
- •Тема 5.2 Хемотроны и другие функциональные устройства
- •Хемотронные приборы
Раздел 3 акустоэлектроника
Акустоэлектроника — направление функциональной микроэлектроники, связанное с использованием механических резонансных эффектов, пьезоэлектрического эффекта, а также эффекта, основанного на взаимодействии электрических полей с волнами акустических напряжений в пьезоэлектрическом полупроводниковом материале.
Акустоэлектроника занимается преобразованием акустических сигналов в электрические и электрических сигналов в акустические.
На принципе электромеханического резонанса основан прибор, называемый резонистором и представляющий собой транзистор с резонирующим затвором (рис. 9.15). Затвор З, представляющий собой часть балки, противоположный конец которой закреплен на изоляторе, нависает над каналом между стоком С и истоком И. Под балкой на изоляторе расположен электрод, на который подается входной сигнал. Сила электростатического взаимодействия сигнального электрода с затвором, на который
Рис. 9.15. Устройство резонистора |
|
Рис. 9.16. Ультразвуковая линия задержки: 1 – входной преобразователь; 2 – звукопровод; 3 – выходной преобразователь |
Υ
Тема 3.1. Акустоэлектронные приборы
Работа акустоэлектронных приборов основана на возбуждении, распространении и приеме акустических волн в твердых телах.
Использование в таких приборах акустических волн, распространяющихся по поверхности твердого тела, так называемых поверхностных акустических волн (ПАВ), предпочтительнее, чем волн, которые распространяются в объеме твердого тела. Поверхностно-акустические волны обладают меньшим по сравнению с объемными, затуханием и рассеиванием, позволяют отводить часть энергии с любого участка распространения ПАВ и управлять этими волнами электронным потоком. Кроме того, технология изготовления приборов на ПАВ хорошо совмещается с технологией изготовления микросхем. На основе акустоэлектронных приборов можно создать устройства, обладающие новыми функциями или существенно улучшить параметры уже известных устройств (частотной селекции и задержки сигналов).
Скорость распространения акустических волн в твердых телах в 105 раз меньше скорости распространения электромагнитных волн в свободном пространстве, благодаря этому можно уменьшить габариты акустоэлектронных приборов. К основным преимуществам таких приборов можно также отнести простоту конструкции, хорошую воспроизводимость характеристик, высокую температурную стабильность и малое потребление энергии.
Конструктивно акустоэлектронные приборы на ПАВ (в простейшем виде) представляют собой подложку из кварца или ниобата лития, являющуюся звукопроводом, а преобразования сигналов осуществляются электроакустическими преобразователями.
Электроакустические преобразователи выполняют в виде двух металлических изолированных гребенок, чаще всего встречно-штыревой структуры (рис. 132).
Р
абочая
частота приборов на ПАВ определяется
расстоянием между штырями гребенок
преобразователя (это расстояние обычно
равно половине длины ПАВ), полоса
пропускания зависит от числа пар штырей
и обратно пропорциональна числу
встречно-штыревых пар (практически
составляет 1 – 60% центральной рабочей
частоты). Например, на частоте 100 МГц
длина ПАВ в подложке из ниобата лития
составляет 35 мкм, ширина штырей – 8,75,
длина – 2700, расстояние между штырями –
17,5 мкм. Верхний предел диапазона рабочих
частот приборов на ПАВ зависит от
технологии изготовления преобразователей
(ее разрешающей способности) и располагается
в пределах нескольких гигагерц.
Акустоэлектронные приборы используют в качестве фильтров (см. § 54), линий задержки, генераторов, усилителей и запоминающих устройств.
Линии задержки на ПАВ характеризуются диапазоном рабочих частот от десятка до тысяч мегагерц, временем задержки от наносекунд до десятков микросекунд и относительно небольшими потерями. Генераторы на ПАВ отличаются высокой стабильностью и работают до частот в несколько мегагерц без использования умножителей.
Эффективны различные приборы на основе ПАВ, где осуществляется взаимодействие акустических волн и носителей заряда в полупроводниках. На таком взаимодействии основана работа различных устройств обработки информации. Благодаря использованию акустооптических явлений можно создать компактные и многофункциональные устройства управления лазерным лучом.