Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нуклеиновы кислоты.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
1.05 Mб
Скачать

ПИРИМИДИНОВЫЕ ОСНОВАНИЯ, производные пиримидина, входящие в состав нуклеиновых к-т, нуклео-тидов, коферментов и др. Канонич. пиримидиновые основания -цитозин (4-амино-2-пиримидон, сокращенно С), тимин (3-метил-пиримидин-2,4-дион, T) и урацил (пиримидин-2,4-дион, U); разл. формы молекул. Пиримидиновые основания (они существуют при разных значениях рН) показаны на схеме.

ПУРИНОВЫЕ ОСНОВАНИЯ, прир. производные пурина. Входят в качестве агликонов (неуглеводного компонента) в нуклеиновые к-ты, нуклеозиды,нуклеотиды; фрагменты коферментоввитаминов и др. Канонические пуриновые основания нуклеиновых к-т-аденин (6-аминопурин, сокращенно А) игуанин (2-амино-6-пуринон, G). Разл. формы молекул пуриновых оснований, к-рые существуют при разных значениях рН, и таутомерные формы показаны на схеме:

Строение нуклеотидов

Каждый нуклеотид содержит 3 химически различных компонента: гетероциклическое азотистое основание, моносахарид (пентозу) и остаток фосфорной кислоты. В зависимости от числа имеющихся в молекуле остатков фосфорной кислоты различают нуклеозидмонофосфаты (НМФ), нуклеозиддифосфаты (НДФ), нуклео-зидтрифосфаты (НТФ) (рис. 4-1).

В состав нуклеиновых кислот входят азотистые основания двух типов: пуриновые - аденин (А),гуанин (G) и пиримидиновые - цитозин (С), тимин (Т) и урацил (U). Нумерация атомов в основаниях записывается внутри цикла (рис. 4-2). Номенклатура нуклеотидов приведена в табл. 4-1.

Пентозы в нуклеотидах представлены либо рибозой (в составе РНК), либо дезоксирибозой (в составе ДНК). Чтобы отличить номера атомов в пентозах от нумерации атомов в основаниях, запись производят с внешней стороны цикла и к цифре добавляют штрих (') - 1', 2', 3', 4' и 5' (рис. 4-3).

Пентозу соединяет с основанием N-гликозидная связь, образованная С1-атомом пентозы (рибозы или дезоксирибозы) и N1 -атомом пиримидина или N9-aтомом пурина (рис. 4-4).

Нуклеотиды, в которых пентоза представлена рибозой, называют рибонуклеотидами, а нуклеиновые кислоты, построенные из рибонуклеотидов, - рибонуклеиновыми кислотами, или РНК. Нуклеиновые кислоты, в мономеры которых входит дезоксирибоза, называют дезоксири-бонуклеиновыми кислотами, или ДНК. Нуклеиновые кислоты по своему строению относят кклассу линейных полимеров. Остов нуклеиновой кислоты имеет одинаковое строение по всей длине молекулы и состоит из чередующихся групп - пентоза-фосфат-пентоза- (рис. 4-5). Вариабельными группами в полинуклеотидных цепях служат азотистые основания - пурины и пиримидины. В молекулы РНК входят аденин (А), урацил (U), гуанин (G) и цитозин (С), в ДНК - аденин (А), тимин (Т), гуанин (G) и цитозин (С). Уникальность структуры и функциональная индивидуальность молекул ДНК и РНК определяются их первичной структурой -последовательностью азотистых оснований в полинуклеотидной цепи.

Рис. 4-4. Пуриновый и пиримидиновый нуклеотиды.

Рис. 4-5. Фрагмент цепи ДНК.

Рис. 4-1. Нуклеозидмоно-, ди- и трифосфаты аденозина. Нуклеотиды - фосфорные эфиры нуклеозидов. Остаток фосфорной кислоты присоединён к 5'-углеродному атому пентозы (5'-фосфоэфирная связь).

141

Рис. 4-2. Пуриновые и пиримидиновые основания.

Таблица 4-1. Номенклатура нуклеотидов

Азотистое основание

Нуклеозид

Нуклеотид

Трёхбуквенное обозначение

Однобуквенный код

Аденин

Аденозин

Аденозинмонофосфат

АМФ

А

Гуанин

Гуанозин

Гуанозинмонофосфат

ГМФ

G

Цитозин

Цитидин

Цитидинмонофосфат

ЦМФ

С

Урацил

Уридин

Уридинмонофосфат

УМФ

U

Тимин

Тимидин

Тимидинмонофосфат

ТМФ

Т

«2»

 

Сравнительная характеристика ДНК и РНК

 

Признаки

ДНК

РНК

Общие

1.    Биополимеры

2.    Участвуют в синтезе белка

3.    Сходное строение мономеров: - азотистое основание

-                                                            молекула пентозы

-                                                            остаток фосфорной кислоты

Местона­хождение

Содержится, в основном, в ядре, образуя хромосомы, в митохондриях, в пластидах

В ядрышке, рибосомах, цитоплазме, митохондриях, хлоропластах

Строение

Двухцепочечная молекула, образующая спираль. Мономеры - дезоксирибонук-леотиды, в состав которых входят дезоксирибоза,  азотистые основания -аденин, тимин, гуанин и цитозин

Одноцепочечная молекула, мономе­ры рибонуклеотиды, в состав которых входят - рибоза, азотистые основания - аденин, урацил, гуанин и цитозин

Свойства

Способна к самоудвоению - редупли­кации, по принципу комплементарное™

Не способна к самоудвоению

Функции

Химическая основа наследственности. Образует хромосомы, хранение и передача наследственной информации. Кодирует информацию о структуре белка. Наименьшей единицей наследственной информации являются три расположенных рядом нуклеотида - триплет. Является матрицей для синтеза молекул РНК, которая формируется на одной цепочке, по принципу комплементарное™

Энергетическая - обеспечивает энергией процессы жизнедеятельности клетки: биосинтез, движение, сокращение мышц, активный перенос веществ через мембрану, и т. п. При отщеплении одной фосфатной группы выделяется 40 кДж

«3» КИСЛОТЫ, ИХ СТРУКТУРА И СВОЙСТВА Нуклеозиды и нуклеотиды являются продуктами гидролиза нуклеиновых кислот, но они присутствуют в живых организмах также в несвязанном состоянии, выполняя исключительно важную роль в обмене веществ.

Нуклеозиды

- это природные гликозиды гетероциклических азотистых оснований (пиримидиновых и пуриновых), которые связаны с пентозами через атомазота. В зависимости от природы углеводного остатка (пентозы) различают рибонуклеозиды и  дезоксирибонуклеозиды.  Пиримидиновые основания: Пуриновые основания: Названия нуклеозидов производятся от тривиального названия соответствующего гетероциклического азотистого основания с суффиксами -идин у пиримидиновых и  -озин у пуриновых нуклеозидов. Исключение их этого правила сделано для нук- леозидов тимина. Нуклеозиды сокращенно чаще обозначают однобуквенным индексом, но существует также система трехбуквенного индекса. Нуклеозиды, являясь N-гликозидами, устойчивы к гидролизу в слабощелочной среде, но расщепляются в кислой среде. Пуринонуклеозиды гидролизуются легко, пирими-диновые - труднее.

Нуклеотиды

являются сложными эфирами нуклеозидов и фосфорной кислоты, которая обычно этерифицирует гидроксогруппы при С-5' пентозы. В связи с наличием в молекуле остатка фосфорной кислоты нуклеотиды проявляют свойства двухосновной кислоты с pKa1 = 0,9 - 1,5 и рKaП = 6 - 6,5. Нуклеотиды называют или как соответствующие кислоты (монозамещенные производные фосфорной кислоты), или как соли (монофосфаты) с указанием в обоих случаях положения фосфатного остатка: Большое значение в живых системах играют нуклеотиды, содержащие в своем составе ди- и трифосфатные группировки. Важнейшими среди этих производных являются аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ), которые способны к взаимо-превращениям путем наращивания или отщепления фосфатных групп: В этих соединениях фосфатные группы в физиологических условиях почти полностью ионизованы, поэтому их часто записывают в виде анионов АТФ4-, АДФ3-. Главная особенность этих нуклеотидов состоит в том, что их полифосфатные группы содержат одну или две ангидридные группы —Р—О—Р—  II II ‌‌‌ ‌ ‌ ‌  О О  . При гидролизе такой группы разрывается связь, называемая макроэргической, и выделяется около 33 кДж/моль. Именно с этим связана роль АТФ в клетке как поставщика химической энергии для биохимических и физиологических процессов. При участии АТФ в организме также осуществляется реакция фосфорилирования гидроксилсодержащих соединений с образованием сложных эфиров фосфорной кислоты: При фосфорилировании карбоксилсодержащих соединений образуются ацилфосфаты, которые содержат ангидридную группировку:  С—О—Р  ׀׀ ׀׀ О О  Фосфорилированные производные выступают активными метаболитами во многих биохимических процессах. . Важнейшая биологическая роль нуклеотидов заключается в том, что из них построены нуклеиновыекислоты (полинуклеотиды).

«4» Аденозинтрифосфа́т (сокр. АТФангл. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном[1], а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке[2]. Систематическое наименование АТФ:

9-β-D-рибофуранозиладенин-5'-трифосфат, или

9-β-D-рибофуранозил-6-амино-пурин-5'-трифосфат.

Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.

Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1'-углеродом рибозы. К 5'-углероду рибозы последовательно присоединяются три молекулыфосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.

АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.

АТФ + H2O → АДФ + H3PO4 + энергия

АТФ + H2O → АМФ + H4P2O7 + энергия

Высвобожденная энергия используется в разнообразных процессах, протекающих с затратой энергии.

[Править]Роль в организме

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул черезбиологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

  • Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

  • Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

  • АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.

  • Также известна роль АТФ в качестве медиатора в синапсах.

[Править]Пути синтеза

В организме АТФ синтезируется путём фосфорилирования АДФ:

АДФ + H3PO4 + энергия → АТФ + H2O.

Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование (используя энергию окисляющихся веществ). Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.

Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.

В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Циклический аденозинмонофосфат (циклический AMФ, цAMФ, cAMP) — производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например,глюкагона или адреналина), которые не могут проходить через клеточную мембрану. Метаболизм цAMФ

цAMФ синтезируется аденилатциклазой в ответ на некоторые гормональные стимуляторы; действует как вторичный посредник при клеточном гормональном контроле путем стимуляции протеинкиназ. цАМФ является аллостерическим эффектором протеинкиназ A и ионных каналов. Синтезируется цАМФ мембранными аденилатциклазами (семейство ферментов, катализирующих реакцию циклизации АТФ с образованием цАМФ и неорганического пирофосфата). Расщепление цАМФ с образованием АМФ катализируется фосфодиэстеразами. Ингибируются цАМФ только при высоких концентрациях метилированных производных ксантина, например, кофеина. Аденилатциклазы активируются G-белками (активность которых в свою очередь зависит от метаботропных рецепторов, связанных с G-белками) .