
- •Оглавление
- •Глава 1. Основные понятия………………………………………………….……………….6
- •Глава 2. Координаты и преобразования…………………………………………………...13
- •Глава 3. Растровая графика. Базовые растровые алгоритмы……………………… 37
- •Глава 4. Векторная графика…………………………………………………………….…..78
- •Глава 5. Фрактальная графика……………………………………………………………..91
- •Глава 6. Цветовые модели компьютерной графики………………………………….…97
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов……. 137
- •Глава 9. Архитектуры графических систем …………………………………………. 181
- •Глава 10. Стандартизация в компьютерной графике……………………………….….189
- •Глава 11. Форматы графических файлов……………………………………………..…205
- •Глава 1. Основные понятия
- •1.1 Разновидности компьютерной графики
- •Полиграфия
- •Мультимедиа
- •Сапр и деловая графика
- •Геоинформационные системы (гис)
- •1.2. Принципы организации графических программ
- •Растровые программы
- •Векторные программы
- •Фрактальные программы
- •Глава 2. Координаты и преобразования
- •2.1 Координатный метод
- •2.1.1. Преобразование координат
- •Однородные координаты и матричное представление двумерных преобразований
- •Композиция двумерных преобразований
- •Композиция трехмерных преобразований
- •Преобразование объектов
- •Преобразование как изменение систем координат
- •2.1.2 Аффинные преобразования на плоскости
- •Проекции
- •Мировые и экранные координаты
- •Основные типы проекций
- •Глава 3. Растровая графика. Базовые растровые алгоритмы
- •3.1 Растровые изображения и их основные характеристики
- •Вывод изображений на растровые устройства
- •Методы улучшения растровых изображений
- •Диагональное расположение ячеек 5x5
- •Диагональные структуры: а - сдвиг строк ячеек, б - ячейки другого типа
- •Набор чм-ячеек 5x5
- •3.4. Базовые растровые алгоритмы Алгоритмы вывода прямой линии
- •Инструменты растровых графических пакетов
- •Преимущества и недостатки растровой графики
- •Глава 4. Векторная графика
- •Средства создания векторных изображений
- •Сравнение механизмов формирования изображений в растровой и векторной графике
- •Структура векторной иллюстрации
- •Математические основы векторной графики
- •Элементы (объекты) векторной графики
- •Достоинства и недостатки векторной графики
- •Глава 5. Фрактальная графика
- •Математика фракталов. Алгоритмы фрактального сжатия изображений
- •Обзор основных фрактальных программ
- •Глава 6. Цветовые модели компьютерной графики
- •6.1 Элементы цвета
- •Свет и цвет
- •Физическая природа света и цвета
- •Излученный и отраженный свет
- •Яркостная и цветовая информация
- •Цвет и окраска
- •Характеристики источника света
- •Стандартные источники
- •Особенности восприятия цвета человеком
- •Цветовой и динамический диапазоны
- •Типы цветовых моделей
- •Аддитивные цветовые модели
- •Субтрактивные цветовые модели
- •Перцепционные цветовые модели
- •Системы соответствия цветов и палитры
- •Триадные и плашечные цвета
- •Цветовые режимы
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов
- •Модели описания поверхностей
- •Аналитическая модель
- •Векторная полигональная модель
- •Воксельная модель
- •Равномерная сетка
- •Неравномерная сетка. Изолинии
- •7.2. Визуализация трехмерных объектов
- •Каркасная визуализация
- •Показ с удалением невидимых точек
- •Глава 8. Реалистическое представление сцен
- •Закрашивание поверхностей
- •Модели отражения света
- •Вычисление нормалей и углов отражения
- •Метод Гуро
- •Метод Фонга
- •8.4. Имитация микрорельефа
- •Трассировка лучей
- •Анимация
- •Глава 9. Архитектуры графических систем
- •Суперстанции
- •Компоненты растровых дисплейных систем
- •Подходы к проектированию графических систем
- •Графические системы на базе сопроцессора i82786
- •Графические системы из набора сверх больших интегральных схем (сбис)
- •Растровый графический процессор dp-8500
- •Графические системы на универсальном процессоре
- •Высокоскоростные графические системы
- •Рабочие (супер)станции с использованием универсального вычислителя
- •Глава 10. Стандартизация в компьютерной графике
- •Международная деятельность по стандартизации в машинной графике
- •Классификация стандартов
- •Графические протоколы
- •Аппаратно-зависимые графические протоколы
- •Языки описания страниц
- •Аппаратно-независимые графические протоколы
- •Проблемно-ориентированные протоколы
- •Глава 11. Форматы графических файлов
- •11.1 Векторные форматы
- •11.2 Растровые форматы
- •11.3 Методы сжатия графических данных
- •11.4 Преобразование файлов из одного формата в другой
- •Глава 12. Технические средства кг (оборудование кг)
- •12.1 Видеоадаптеры
- •Манипуляторы
- •Оборудование мультимедиа
- •Мониторы
- •Видеобластеры
- •Периферия
- •Принтеры
- •Имиджсеттеры
- •Плоттеры
- •Звуковые карты
- •Сканеры
- •Секреты графических планшетов (дигитайзеров)
- •Цифровые фотоаппараты и фотокамеры
- •Литература
Глава 8. Реалистическое представление сцен
Основные
направления
реалистического
представления
сцен
трехмерной
графики
определяются
как:
синтез реалистичных изображений,
реалистическое
оживление
синтезированных
объектов
(анимация).
В этом разделе будут рассмотрены только некоторые базовые методы синтеза
реалистических изображений: Модели освещения Модели закраски Трассировка лучей Имитация микрорельефа
Механизмы отражения света
Другие методы синтеза – прозрачность, тени, задание фактуры, излучательность и т.д. выносятся на самостоятельное изучение.
Закрашивание поверхностей
В этом разделе мы рассмотрим методы, которые позволяют получить более-менее реалистичное изображение для объектов, которые моделируются многогранниками и
полигональными сетками.
Модели отражения света
Рассмотрим, как можно определить цвет пикселов изображения поверхности в соответствии с интенсивностью отраженного света при учете взаимного расположения поверхности, источника света и наблюдателя.
Зеркальное отражение света. Угол между нормалью и падающим лучом равняется
углу между нормалью и отраженным лучом. Падающий луч, отраженный луч и нормаль располагаются в одной плоскости (рис. 8.1).
Рис. 8.1. Зеркальное отражение света
Поверхность считается идеально зеркальной, если на ней отсутствуют какие-либо неровности, шероховатости. Собственный цвет у такой поверхности не наблюдается. Световая энергия падающего луча отражается только по линии отраженного луча. Любое рассеивание в стороны от этой линии отсутствует. В природе, вероятно, нет идеально гладких поверхностей, поэтому полагают следующее: если глубина шероховатостей существенно меньше длины волны излучения, то рассеивание не наблюдается. Для ви- димого спектра можно принять, что глубина шероховатости поверхности зеркала должна быть меньше 0.5 мкм.
Если поверхность зеркала отполирована неидеально, то наблюдается зависимость
интенсивности отраженного света от длины волны — чем больше длина волны, тем лучшее отражение. Например, красные лучи отражаются сильнее, чем синие.
При наличии шероховатости есть зависимость интенсивности отраженного света от угла падения. Отражение света максимально для углов Э, близких к 90 градусам.
Рис. 8.2. Примры для разных значений показателя p модели Фонга
Падающий луч, попадая на шероховатую поверхность реального зеркала, порождает не один отраженный луч, а несколько лучей, которые рассеиваются в разных направлениях. Зона рассеивания зависит от качества полировки и может быть описана некоторым законом распределения. Как правило, форма зоны рассеивания симметрична относительно линии идеального зеркально отраженного луча. К числу простейших, но довольно часто используемых, относится эмпирическая модель Фонга, соответственно которой интенсивность зеркально отраженного излучения пропорциональна (cosa) где а
угол отклонения от линии идеально отраженного луча. Показатель находится в
диапазоне от 1 до 1000 и зависит от качества полировки. Запишем это таким образом:
Is = I cos p ,
где I - интенсивность излучения источника
Диффузное отражение. Этот вид отражения присущ матовым поверхностям. Матовой можно считать такую поверхность, размер шероховатостей которой уже настолько большой, что падающий луч рассеивается равномерно во все стороны. Такой тип отражения характерен, например, для гипса, песка, бумаги. Диффузное отражение описывается законом Ламберта, согласно которому интенсивность отраженного света пропорциональна косинусу угла между направлением на точечный источник света и
нормалью к поверхности:
Id = I cos ,
где I— интенсивность источника света.
При создании реалистических изображений следует учитывать то, что в природе, вероятно, не существуют идеально зеркальные или идеально матовые поверхности. При
изображении объектов средствами компьютерной графики обычно моделируют сочетание зеркальности и диффузного рассеивания в пропорции, характерной для конкретного
материала. В этом случае модель отражения записывают в виде взвешенной суммы диффузной и зеркальной составляющих:
где константы Kd и Кс определяют отражательные свойства определенного материала. Константы Kd и Кс обычно принимают значения в диапазоне от 0 до 1, причем Kd + Кс = 1.
Соответственно этой формуле интенсивность отраженного света равняется нулю для некоторых углов и . Однако в реальных сценах обычно нет абсолютно затемненных объектов, следует учитывать фоновое подсвечивание — освещение рассеянным светом, отраженным от других объектов (рис. 8.3).
Рис. 8.3. Модель отражения света и три ее составляющие
В таком случае интенсивность может быть эмпирически выражена следующей формулой:
Iрез = IaKa + IdKd + IsKs = IaKa + I (Kd cos +Ks cos p )
где
Ia
-
интенсивность
рассеянного
света,
Ка
—
константа.
Можно еще усовершенствовать модель отражения, если учесть то, что энергия от
источника света уменьшается соответственно расстоянию до него
где R - расстояние от источника света до поверхности, F(R) — функция ослабления. Для точечного источника света энергия излучения уменьшается пропорционально квадрату расстояния. На практике обычно используют линейную аппроксимацию функции ослабления.
Для нескольких источников света диффузную и зеркальную составляющую
рассчитывают в отдельности для каждого источника, а результат — сумма всех составляющих: