
- •Оглавление
- •Глава 1. Основные понятия………………………………………………….……………….6
- •Глава 2. Координаты и преобразования…………………………………………………...13
- •Глава 3. Растровая графика. Базовые растровые алгоритмы……………………… 37
- •Глава 4. Векторная графика…………………………………………………………….…..78
- •Глава 5. Фрактальная графика……………………………………………………………..91
- •Глава 6. Цветовые модели компьютерной графики………………………………….…97
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов……. 137
- •Глава 9. Архитектуры графических систем …………………………………………. 181
- •Глава 10. Стандартизация в компьютерной графике……………………………….….189
- •Глава 11. Форматы графических файлов……………………………………………..…205
- •Глава 1. Основные понятия
- •1.1 Разновидности компьютерной графики
- •Полиграфия
- •Мультимедиа
- •Сапр и деловая графика
- •Геоинформационные системы (гис)
- •1.2. Принципы организации графических программ
- •Растровые программы
- •Векторные программы
- •Фрактальные программы
- •Глава 2. Координаты и преобразования
- •2.1 Координатный метод
- •2.1.1. Преобразование координат
- •Однородные координаты и матричное представление двумерных преобразований
- •Композиция двумерных преобразований
- •Композиция трехмерных преобразований
- •Преобразование объектов
- •Преобразование как изменение систем координат
- •2.1.2 Аффинные преобразования на плоскости
- •Проекции
- •Мировые и экранные координаты
- •Основные типы проекций
- •Глава 3. Растровая графика. Базовые растровые алгоритмы
- •3.1 Растровые изображения и их основные характеристики
- •Вывод изображений на растровые устройства
- •Методы улучшения растровых изображений
- •Диагональное расположение ячеек 5x5
- •Диагональные структуры: а - сдвиг строк ячеек, б - ячейки другого типа
- •Набор чм-ячеек 5x5
- •3.4. Базовые растровые алгоритмы Алгоритмы вывода прямой линии
- •Инструменты растровых графических пакетов
- •Преимущества и недостатки растровой графики
- •Глава 4. Векторная графика
- •Средства создания векторных изображений
- •Сравнение механизмов формирования изображений в растровой и векторной графике
- •Структура векторной иллюстрации
- •Математические основы векторной графики
- •Элементы (объекты) векторной графики
- •Достоинства и недостатки векторной графики
- •Глава 5. Фрактальная графика
- •Математика фракталов. Алгоритмы фрактального сжатия изображений
- •Обзор основных фрактальных программ
- •Глава 6. Цветовые модели компьютерной графики
- •6.1 Элементы цвета
- •Свет и цвет
- •Физическая природа света и цвета
- •Излученный и отраженный свет
- •Яркостная и цветовая информация
- •Цвет и окраска
- •Характеристики источника света
- •Стандартные источники
- •Особенности восприятия цвета человеком
- •Цветовой и динамический диапазоны
- •Типы цветовых моделей
- •Аддитивные цветовые модели
- •Субтрактивные цветовые модели
- •Перцепционные цветовые модели
- •Системы соответствия цветов и палитры
- •Триадные и плашечные цвета
- •Цветовые режимы
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов
- •Модели описания поверхностей
- •Аналитическая модель
- •Векторная полигональная модель
- •Воксельная модель
- •Равномерная сетка
- •Неравномерная сетка. Изолинии
- •7.2. Визуализация трехмерных объектов
- •Каркасная визуализация
- •Показ с удалением невидимых точек
- •Глава 8. Реалистическое представление сцен
- •Закрашивание поверхностей
- •Модели отражения света
- •Вычисление нормалей и углов отражения
- •Метод Гуро
- •Метод Фонга
- •8.4. Имитация микрорельефа
- •Трассировка лучей
- •Анимация
- •Глава 9. Архитектуры графических систем
- •Суперстанции
- •Компоненты растровых дисплейных систем
- •Подходы к проектированию графических систем
- •Графические системы на базе сопроцессора i82786
- •Графические системы из набора сверх больших интегральных схем (сбис)
- •Растровый графический процессор dp-8500
- •Графические системы на универсальном процессоре
- •Высокоскоростные графические системы
- •Рабочие (супер)станции с использованием универсального вычислителя
- •Глава 10. Стандартизация в компьютерной графике
- •Международная деятельность по стандартизации в машинной графике
- •Классификация стандартов
- •Графические протоколы
- •Аппаратно-зависимые графические протоколы
- •Языки описания страниц
- •Аппаратно-независимые графические протоколы
- •Проблемно-ориентированные протоколы
- •Глава 11. Форматы графических файлов
- •11.1 Векторные форматы
- •11.2 Растровые форматы
- •11.3 Методы сжатия графических данных
- •11.4 Преобразование файлов из одного формата в другой
- •Глава 12. Технические средства кг (оборудование кг)
- •12.1 Видеоадаптеры
- •Манипуляторы
- •Оборудование мультимедиа
- •Мониторы
- •Видеобластеры
- •Периферия
- •Принтеры
- •Имиджсеттеры
- •Плоттеры
- •Звуковые карты
- •Сканеры
- •Секреты графических планшетов (дигитайзеров)
- •Цифровые фотоаппараты и фотокамеры
- •Литература
Математические основы векторной графики
Если основным элементом растровой графики является пиксел (точка), то в случае векторной графики в роли базового элемента выступает линия. Это связано с тем, что в векторной графике любой объект состоит из набора линий, соединенных между собой узлами. Как уже отмечалось в предыдущем разделе, отдельная линия, соединяющая соседние узлы, называется сегментом (в геометрии ей соответствует отрезок). Сегмент может быть задан с помощью уравнения прямой или уравнения кривой линии, требующих для своего описания разного количества параметров. Для более полного понимания механизма формирования векторных объектов рассмотрим способы представления основных элементов векторной графики: точки, прямой линии, отрезка прямой, кривой второго порядка, кривой третьего порядка, кривых Безъе.
В векторной графике тачке соответствует узел. На плоскости этот объект пред- ставляется двумя числами (X, Y), задающими его положение относительно начала координат.
Для описания прямой линии используется уравнение Y = аХ + b. Поэтому для по- строения данного объекта требуется задание всего двух параметров: а и b. Результатом будет построение бесконечной прямой в декартовых координатах. В отличие от прямой, отрезок прямой требует для своего описания двух дополнительных параметров, соответствующих началу и концу отрезка (например, X1 и Х2).
К классу кривых второго порядка относятся параболы, гиперболы, эллипсы и окружности, то есть все линии, уравнения которых содержат переменные в степени не выше второй. В векторной графике эти кривые используется для построения базовых форм (примитивов) в виде эллипсов и окружностей. Кривые второго порядка не имеют точек перегиба. Используемое для описания этих кривых каноническое уравнение требует для своего задания пяти параметров:
х2 + a1y2 + а2ху + а3х + а4у + a5 = 0.
Для построения отрезка кривой требуется задать два дополнительных параметра.
В отличие от кривых второго порядка кривые третьего порядка могут иметь точку перегиба. Например, график функции Y ™ X3 (рис. 10.6) имеет точку перегиба в начале координат (0, 0). Именно эта особенность данного класса функций позволяет использовать их в качестве основных кривых для моделирования различных природных
объектов в векторной графике. Следует отметить, что упомянутые ранее прямые и кривые второго порядка являются частным случаем кривых третьего порядка.
Каноническое уравнение, используемое для описания уравнения третьего порядка, требует для своего задания девяти параметров:
х3 + a1y3 + a2 х2 у+ а3ху2 + а4х2 + а5у2 + а6ху + а7х + а8у + а9 = 0.
Для описания отрезка кривой третьего порядка требуется на два параметра больше. Кривые Безъе — это частный вид кривых третьего порядка, требующий для своего описания меньшего количества параметров — восьми вместо одиннадцати. В основе построения кривых Безье лежит использование двух касательных, проведенных к крайним
точкам отрезка линии (рис. 4.6, справа). На кривизну (форму) линии влияет угол наклона и длина отрезка касательной, значениями которых можно управлять в интерактивном режиме путем перетаскивания их концевых точек. Таким образом, касательные выполняют функции виртуальных рычагов, позволяющих управлять формой кривой. Более подробно об этом будет сказано далее в разделе «Кривые Безье».
Рис. 4.6. Представление кривой линии с помощью кривых третьего порядка: слева — классический вариант; справа — кривая Беэье