
- •Оглавление
- •Глава 1. Основные понятия………………………………………………….……………….6
- •Глава 2. Координаты и преобразования…………………………………………………...13
- •Глава 3. Растровая графика. Базовые растровые алгоритмы……………………… 37
- •Глава 4. Векторная графика…………………………………………………………….…..78
- •Глава 5. Фрактальная графика……………………………………………………………..91
- •Глава 6. Цветовые модели компьютерной графики………………………………….…97
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов……. 137
- •Глава 9. Архитектуры графических систем …………………………………………. 181
- •Глава 10. Стандартизация в компьютерной графике……………………………….….189
- •Глава 11. Форматы графических файлов……………………………………………..…205
- •Глава 1. Основные понятия
- •1.1 Разновидности компьютерной графики
- •Полиграфия
- •Мультимедиа
- •Сапр и деловая графика
- •Геоинформационные системы (гис)
- •1.2. Принципы организации графических программ
- •Растровые программы
- •Векторные программы
- •Фрактальные программы
- •Глава 2. Координаты и преобразования
- •2.1 Координатный метод
- •2.1.1. Преобразование координат
- •Однородные координаты и матричное представление двумерных преобразований
- •Композиция двумерных преобразований
- •Композиция трехмерных преобразований
- •Преобразование объектов
- •Преобразование как изменение систем координат
- •2.1.2 Аффинные преобразования на плоскости
- •Проекции
- •Мировые и экранные координаты
- •Основные типы проекций
- •Глава 3. Растровая графика. Базовые растровые алгоритмы
- •3.1 Растровые изображения и их основные характеристики
- •Вывод изображений на растровые устройства
- •Методы улучшения растровых изображений
- •Диагональное расположение ячеек 5x5
- •Диагональные структуры: а - сдвиг строк ячеек, б - ячейки другого типа
- •Набор чм-ячеек 5x5
- •3.4. Базовые растровые алгоритмы Алгоритмы вывода прямой линии
- •Инструменты растровых графических пакетов
- •Преимущества и недостатки растровой графики
- •Глава 4. Векторная графика
- •Средства создания векторных изображений
- •Сравнение механизмов формирования изображений в растровой и векторной графике
- •Структура векторной иллюстрации
- •Математические основы векторной графики
- •Элементы (объекты) векторной графики
- •Достоинства и недостатки векторной графики
- •Глава 5. Фрактальная графика
- •Математика фракталов. Алгоритмы фрактального сжатия изображений
- •Обзор основных фрактальных программ
- •Глава 6. Цветовые модели компьютерной графики
- •6.1 Элементы цвета
- •Свет и цвет
- •Физическая природа света и цвета
- •Излученный и отраженный свет
- •Яркостная и цветовая информация
- •Цвет и окраска
- •Характеристики источника света
- •Стандартные источники
- •Особенности восприятия цвета человеком
- •Цветовой и динамический диапазоны
- •Типы цветовых моделей
- •Аддитивные цветовые модели
- •Субтрактивные цветовые модели
- •Перцепционные цветовые модели
- •Системы соответствия цветов и палитры
- •Триадные и плашечные цвета
- •Цветовые режимы
- •Глава 7. Методы и алгоритмы построения сложных трехмерных объектов
- •Модели описания поверхностей
- •Аналитическая модель
- •Векторная полигональная модель
- •Воксельная модель
- •Равномерная сетка
- •Неравномерная сетка. Изолинии
- •7.2. Визуализация трехмерных объектов
- •Каркасная визуализация
- •Показ с удалением невидимых точек
- •Глава 8. Реалистическое представление сцен
- •Закрашивание поверхностей
- •Модели отражения света
- •Вычисление нормалей и углов отражения
- •Метод Гуро
- •Метод Фонга
- •8.4. Имитация микрорельефа
- •Трассировка лучей
- •Анимация
- •Глава 9. Архитектуры графических систем
- •Суперстанции
- •Компоненты растровых дисплейных систем
- •Подходы к проектированию графических систем
- •Графические системы на базе сопроцессора i82786
- •Графические системы из набора сверх больших интегральных схем (сбис)
- •Растровый графический процессор dp-8500
- •Графические системы на универсальном процессоре
- •Высокоскоростные графические системы
- •Рабочие (супер)станции с использованием универсального вычислителя
- •Глава 10. Стандартизация в компьютерной графике
- •Международная деятельность по стандартизации в машинной графике
- •Классификация стандартов
- •Графические протоколы
- •Аппаратно-зависимые графические протоколы
- •Языки описания страниц
- •Аппаратно-независимые графические протоколы
- •Проблемно-ориентированные протоколы
- •Глава 11. Форматы графических файлов
- •11.1 Векторные форматы
- •11.2 Растровые форматы
- •11.3 Методы сжатия графических данных
- •11.4 Преобразование файлов из одного формата в другой
- •Глава 12. Технические средства кг (оборудование кг)
- •12.1 Видеоадаптеры
- •Манипуляторы
- •Оборудование мультимедиа
- •Мониторы
- •Видеобластеры
- •Периферия
- •Принтеры
- •Имиджсеттеры
- •Плоттеры
- •Звуковые карты
- •Сканеры
- •Секреты графических планшетов (дигитайзеров)
- •Цифровые фотоаппараты и фотокамеры
- •Литература
Преобразование как изменение систем координат
Мы рассматриваем преобразование множества точек, принадлежащих объекту, в
некоторое другое множество точек, причем оба этих множества описаны в одной и той же системе координат. Таким образом, система координат остается неизменной, а сам объект преобразуется относительно начала координат до получения желаемого размера. Другим эквивалентным способом описания преобразования является смена систем координат. Такой подход оказывается полезным, когда желательно собрать вместе много объектов, каждый из которых описан в своей собственной локальной системе координат, и выразить их координаты в одной глобальной системе координат. Существует и еще один, третий подход, при котром происходит изменение глобальной системы координат по отношению к локальной системе координат объекта (см. рис.2.7).
Рис. 2.7. Преобразования как изменение системы координат
Рис. 2.8. Пример преобразования с изменением системы координат
Описание всех объектов (символов) в мировой системе координат и последующее размещение их в желаемом месте, приводит до некоторой степени к нереалистичному изображению всех символов, первоначально заданных один поверх другого в одной и той же мировой системе координат. Более естественно полагать, что каждый символ задан в своей собственной системе координат и затем промасштабирован, повернут и перенесен путем преобразования координат в новую мировую систему координат. Второй подход легко представить себе как сжатие или растяжение, поворот и позиционирование на мировой координатной плоскости отдельных листков бумаги, на каждом из которых изображен символ (или наоборот, сжатие или растяжение, поворот и перемещение плоскости относительно каждого из листков бумаги). С математической точки зрения оба подхода идентичны.
Подход, основанный на изменении систем координат, удобен в тех случаях, когда задается дополнительная информация для подобъектов в их локальных системах координат. Например, если к переднему колесу трехколесного велосипеда (рис. 2.8) приложить крутящий момент, то все его колеса повернутся. Нам необходимо определить, насколько велосипед переместится в пространстве как единое целое. Эта задача более сложная, чем та, которая связана с размещением символов, поскольку здесь требуется несколько последовательных изменений систем координат. В начальный момент системы координат велосипеда и его переднего колеса заданы относительно мировой системы
координат. При движении велосипеда вперед переднее колесо поворачивается вокруг оси z системы координат колеса, и одновременно системы координат колеса и велосипеда перемещаются относительно мировой системы координат. Системы координат колеса и велосипеда связаны с мировой системой координат с помощью зависящих от времени переносов вдоль осей x и у и поворота вокруг оси у. Координатные системы велосипеда и колеса между собой связаны с помощью зависящего от времени поворота вокруг оси у, вызываемого поворотом руля. (Система координат велосипеда связана с рамой велосипеда, а не с рулем).