
- •Глава I. Основные аспекты эконометрического моделирования
- •Глава II. Корреляционный анализ
- •Глава III. Множественный регрессионный анализ
- •Глава IV. Временные ряды
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •Введение Определение эконометрики
- •Значение эконометрики в экономике
- •Задачи эконометрики
- •Глава I. Основные аспекты эконометрического
- •1.1. Понятие о модели, системе
- •1.2. Адекватность модели
- •1.3. Модель типа черного ящика
- •1.4. Основная предпосылка эконометрического анализа
- •1.5. Построение параметрической регрессионной модели
- •1.6. Классификация эконометрических моделн.
- •1.6.1. По структуре уравнений регрессии
- •1.6.2. По способу учета динамики:
- •1.6.3. По виду связи между
- •1.6.4. По алгоритму оценки параметров модели
- •1.7. Типы данных
- •1.7.1. Данные пространственного типа
- •1.7.2. Временной (динамический) ряд
- •1.8. Этапы построения эконометрической модели
- •Глава II. Корреляционный анализ
- •2.1. Цель корреляционного анализа
- •2.2. Числовые меры корреляционной связи
- •2.2.1. Ковариация
- •2.2.2. Выборочная оценка коэффициента линейной парной корреляции
- •2.2.3. Математический смысл коэффициента линейной парной корреляции
- •2.2.4. Статистический смысл коэффициента линейной парной корреляции
- •2.2.5. Геометрическая интерпретация коэффициента корреляции
- •2.3. Проверка статистической значимости коэффициента корреляции
- •2.4. Множественный корреляционный анализ
- •2.4.1. Корреляционная матрица
- •2.4.2. Выборочный линейный коэффициент множественной корреляции
- •2.4.3. Частный коэффициент корреляции
- •2.4.4. Коэффициент детерминации
- •2.4.5. Оценка значимости множественного коэффициента детерминации
- •2.4.6. Индекс корреляции при нелинейной связи двух случайных величин
- •2.4.7. Индекс множественной корреляции
- •2.5. Коэффициент ранговой корреляции
- •Глава III. Множественный регрессионный анализ
- •3.1. Постановка задачи
- •3.2. Метод наименьших квадратов (мнк) в скалярной форме
- •3.3. Матричная форма метода наименьших квадратов.
- •3.3.1.Уравнение наблюдений в матричной форме
- •3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
- •3.4. Предпосылки метода наименьших квадратов
- •3.5. Свойства оценок, получаемых по методу наименьших квадратов
- •3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
- •3.6.1.Гипотеза о близости к нулю математического ожидания остатков
- •3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
- •3.6.3. Гипотеза о статистической значимости всего уравнения регрессии в целом
- •3.6.4. Оценка качества уравнения регрессии
- •3.6.5. Скорректированный коэффициент детерминации
- •3.6.6. Проверка гипотезы о чисто случайном характере остатков
- •3.6.7. Проверка гипотезы о нормальном законе распределения остатков
- •3.7. Точечный прогноз и оценка доверительных интервалов прогноза
- •3.8. Оценка погрешностей расчета по уравнению регрессии
- •3.9. Коэффициент эластичности, бета-коэффициент и дельта-коэффициент для линейного уравнения регрессии
- •Глава IV. Временные ряды
- •4.1. Понятие о временных рядах, их классификация
- •4.2. Компонентный анализ временных рядов
- •4.3. Понятие случайного процесса
- •4.4. Понятие о коэффициенте корреляции во временном ряде. Автокорреляционная функция (акф)
- •4.5. Выборочная оценка коэффициента автокорреляции для числа степеней свободы
- •4.6. Частный коэффициент автокорреляции
- •4.7. Предварительный анализ временных рядов
- •4.8. Авторегрессионные модели.
- •Ar(p) – порядка p
- •4.9. Авторегрессионная модель скользящей средней
- •4.10. Разностные уравнения с лаговыми пременными
- •4.11. Оценка коэффициентов авторегрессионных моделей.
- •4.12. Прогнозирование по разностной авторегрессионной модели
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •5.1.Проблема спецификации переменных. Мультиколлинеарность
- •5.2.Способы устранения мультиколлинеарности
- •5.3. Метод пошаговой регрессии (конструктивный метод)
- •5.4. Деструктивный подход (“расщепления”) мультиколлинеарных пар
- •5.5.Случай нелинейных координатных функций
- •5.5.1.Формальная замена переменных
- •5.5.2. Специальное преобразование
- •5.6. Линейные уравнения регрессии с переменной структурой. Фиктивные переменные
- •5.7. Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных
- •5.8. Двухшаговый метод наименьших квадратов
- •Литература
1.6.4. По алгоритму оценки параметров модели
1. Неадаптивные (метод наименьших квадратов, поисковые методы, алгоритмы нечеткой регрессии, и др.)[1].
2. Адаптивные (обучаемые, включая нейросетевые модели).
Замечание: На практике классификационные признаки могут «переплетаться», т.е. использоваться комбинированные (гибридные) модели, например нейро-нечеткие [14], нечеткие регрессионные [15] и др.
1.7. Типы данных
1.7.1. Данные пространственного типа
База данных состоит из кортежей:
которые образуют матрицу. Каждая строка матрицы – это кортеж (или вектор -строка таблицы исходных данных).
Здесь основное требование – независимость наблюдений {yj} между собой, т.е. {yj} – случайные (измеренные независимо) величины в данном фиксированном временном срезе, где t=const, это влечет за собой условие отсутствие коррелированности возмущений.
(1.16)
–
коэффициент либо
индекс корреляции.
Как определить, является ли база данных серией независимых наблюдений? Однозначного ответа нет, т.е. это условие реально труднопроверяемо. Считается, что {Yi} не должны быть связаны причинно [5].
С
овокупность
кортежей для всех наблюдений i=
(таблица) в фиксированном временном
срезе есть входные данные пространственного
типа.
1.7.2. Временной (динамический) ряд
Здесь наблюдения упорядочены во времени: {Уt}, t=t1,t2,….ti,…tn, где ti>ti-1.
а). Чаще всего Dt = ti - ti-1 = const. Тогда в записи указывается только номер временного интервала; {Уt}- временной ряд.
б). Временной ряд
может быть многомерным: {Уt,
х1t,…xnt}
(
),
т.е. другими словами, если наблюдаются
одновременно несколько независимых
случайных величин в каждом временном
срезе, t=t0,
то имеем многомерный временной ряд:
Данные типа многомерного временного ряда
Таблица 1.1.
ti |
t1 |
t2 |
…. |
tn |
yi |
y1 |
y2 |
…. |
yn |
хi |
х1 |
х2 |
…. |
хn |
zi |
z1 |
z2 |
…. |
zn |
Данные типа многомерных временных рядов имеют место в многофакторных прогнозных моделях.
1.8. Этапы построения эконометрической модели
Можно условно выделить следующие основные этапы построения эконометрической модели:
описание проблемы экономической ситуации;
спецификация переменных;
мониторинг данных (наблюдение с целью контроля и управления);
идентификация – выбор структуры модели и определение ее параметров;
оценка адекватности модели;
верификация модели;
проверка модели на практике;
внесение поправок, для корректировки модели на основе данных, полученных при практическом использовании.
Глава II. Корреляционный анализ
2.1. Цель корреляционного анализа
Цель корреляционного анализа – количественная оценка тесноты связи между случайными величинами.
2.2. Числовые меры корреляционной связи