
- •Глава I. Основные аспекты эконометрического моделирования
- •Глава II. Корреляционный анализ
- •Глава III. Множественный регрессионный анализ
- •Глава IV. Временные ряды
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •Введение Определение эконометрики
- •Значение эконометрики в экономике
- •Задачи эконометрики
- •Глава I. Основные аспекты эконометрического
- •1.1. Понятие о модели, системе
- •1.2. Адекватность модели
- •1.3. Модель типа черного ящика
- •1.4. Основная предпосылка эконометрического анализа
- •1.5. Построение параметрической регрессионной модели
- •1.6. Классификация эконометрических моделн.
- •1.6.1. По структуре уравнений регрессии
- •1.6.2. По способу учета динамики:
- •1.6.3. По виду связи между
- •1.6.4. По алгоритму оценки параметров модели
- •1.7. Типы данных
- •1.7.1. Данные пространственного типа
- •1.7.2. Временной (динамический) ряд
- •1.8. Этапы построения эконометрической модели
- •Глава II. Корреляционный анализ
- •2.1. Цель корреляционного анализа
- •2.2. Числовые меры корреляционной связи
- •2.2.1. Ковариация
- •2.2.2. Выборочная оценка коэффициента линейной парной корреляции
- •2.2.3. Математический смысл коэффициента линейной парной корреляции
- •2.2.4. Статистический смысл коэффициента линейной парной корреляции
- •2.2.5. Геометрическая интерпретация коэффициента корреляции
- •2.3. Проверка статистической значимости коэффициента корреляции
- •2.4. Множественный корреляционный анализ
- •2.4.1. Корреляционная матрица
- •2.4.2. Выборочный линейный коэффициент множественной корреляции
- •2.4.3. Частный коэффициент корреляции
- •2.4.4. Коэффициент детерминации
- •2.4.5. Оценка значимости множественного коэффициента детерминации
- •2.4.6. Индекс корреляции при нелинейной связи двух случайных величин
- •2.4.7. Индекс множественной корреляции
- •2.5. Коэффициент ранговой корреляции
- •Глава III. Множественный регрессионный анализ
- •3.1. Постановка задачи
- •3.2. Метод наименьших квадратов (мнк) в скалярной форме
- •3.3. Матричная форма метода наименьших квадратов.
- •3.3.1.Уравнение наблюдений в матричной форме
- •3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
- •3.4. Предпосылки метода наименьших квадратов
- •3.5. Свойства оценок, получаемых по методу наименьших квадратов
- •3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
- •3.6.1.Гипотеза о близости к нулю математического ожидания остатков
- •3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
- •3.6.3. Гипотеза о статистической значимости всего уравнения регрессии в целом
- •3.6.4. Оценка качества уравнения регрессии
- •3.6.5. Скорректированный коэффициент детерминации
- •3.6.6. Проверка гипотезы о чисто случайном характере остатков
- •3.6.7. Проверка гипотезы о нормальном законе распределения остатков
- •3.7. Точечный прогноз и оценка доверительных интервалов прогноза
- •3.8. Оценка погрешностей расчета по уравнению регрессии
- •3.9. Коэффициент эластичности, бета-коэффициент и дельта-коэффициент для линейного уравнения регрессии
- •Глава IV. Временные ряды
- •4.1. Понятие о временных рядах, их классификация
- •4.2. Компонентный анализ временных рядов
- •4.3. Понятие случайного процесса
- •4.4. Понятие о коэффициенте корреляции во временном ряде. Автокорреляционная функция (акф)
- •4.5. Выборочная оценка коэффициента автокорреляции для числа степеней свободы
- •4.6. Частный коэффициент автокорреляции
- •4.7. Предварительный анализ временных рядов
- •4.8. Авторегрессионные модели.
- •Ar(p) – порядка p
- •4.9. Авторегрессионная модель скользящей средней
- •4.10. Разностные уравнения с лаговыми пременными
- •4.11. Оценка коэффициентов авторегрессионных моделей.
- •4.12. Прогнозирование по разностной авторегрессионной модели
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •5.1.Проблема спецификации переменных. Мультиколлинеарность
- •5.2.Способы устранения мультиколлинеарности
- •5.3. Метод пошаговой регрессии (конструктивный метод)
- •5.4. Деструктивный подход (“расщепления”) мультиколлинеарных пар
- •5.5.Случай нелинейных координатных функций
- •5.5.1.Формальная замена переменных
- •5.5.2. Специальное преобразование
- •5.6. Линейные уравнения регрессии с переменной структурой. Фиктивные переменные
- •5.7. Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных
- •5.8. Двухшаговый метод наименьших квадратов
- •Литература
1.5. Построение параметрической регрессионной модели
Будем аппроксимировать (приближено описывать) Мх(Y) некоторой заранее выбранной непрерывной функцией с параметрами
(1.7)
Пусть неизвестный
вектор параметров
находится (оценивается) каким-либо
методом, например методом наименьших
квадратов (МНК) [5].
Вид функции
(·)
выбирается заранее, а еще лучше подбирается
с учетом имеющихся наблюдений с
использованием «Мастера диаграмм» в
программной среде Excel.
Пример:
Здесь подходящей аппроксимирующей функцией является парабола:
(1.8)
Подставляя уравнение (1.7) в уравнение (1.5) получаем конкретное уравнение регрессии (параметрическую модель):
(1.9)
где е – случайные ошибки аппроксимации (остатки), которые включают в себя как ошибки аппроксимации (неточного описания), так и случайные возмущения данных, в частности вызванные неучтенными в модели регрессорами.
В i – ом наблюдении
–
расчетное значение
по уравнению регрессии, а yi
– наблюдаемое значение для Y.
Параметрическая
регрессионная модель (1.9) описывает
усредненную зависимость Y
от
в некотором коридоре своего случайного
разброса (рис.1.4.). Другими словами –
линия регрессии
–
это средняя линия трубки в случае одной
переменной. В случае многих независимых
переменных
описывает
серединную поверхность. Ее называют
«поверхность отклика» (реакции объекта
на воздействие
):
– следствие;
– причина (воздействие на объект).
1.6. Классификация эконометрических моделн.
Отметим, что существует множество классификаций эконометрических моделей в зависимости от выбранных признаков классификации. Ниже приводится достаточно простая и удобная классификация.
1.6.1. По структуре уравнений регрессии
1). Аддитивные (полиноминальные) уравнения регрессии представляются в виде суммы базисных функций с соответствующими коэффициентами:
(1.10)
где {¦j(хj)} - совокупность базисных (координаторных) функций, и задаваемых априорно.
Пример:
2). Мультипликативная форма в виде произведения базисных функций
(1.11)
Примером такой модели является модель Брандона:
– математическое
ожидание (экспериментальное среднее).
1.6.2. По способу учета динамики:
1). Динамические многофакторные, с явным выделением временного фактора t:
(1.12)
2). Динамические с неявным заданием временных зависимостей через регрессоры:
(1.13)
3). Динамические с лаговыми переменными.
(1.14)
здесь t – временной лаг (запаздывание); m – число тактов запаздывания.
4). Статические.
(1.15)
Замечание: Введение в модель лаговых переменных – весьма эффективный прием, который позволяет наряду с основным («быстрым») временем t, учесть динамические процессы с большей постоянной времени, т.е. «медленное» время а, значит, предысторию процесса, что важно в эконометрических объектах [ 1,5,6].
1.6.3. По виду связи между
Можно выделить модели:
1. Регрессионные (аддитивные и мультипликативные).
2. Системы
одновременных уравнений – когда модель
состоит не из одного уравнения, а
нескольких, т.е. в правой части этих
уравнений стоят компоненты векторов
,
и следовательно четко не разделены
причины и следствия.
3.Рекурсивные – частичный случай системы одновременных уравнений. В рекурсивных моделях система одновременных уравнений «расщепляются » по рекуррентному алгоритму.