
- •Глава I. Основные аспекты эконометрического моделирования
- •Глава II. Корреляционный анализ
- •Глава III. Множественный регрессионный анализ
- •Глава IV. Временные ряды
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •Введение Определение эконометрики
- •Значение эконометрики в экономике
- •Задачи эконометрики
- •Глава I. Основные аспекты эконометрического
- •1.1. Понятие о модели, системе
- •1.2. Адекватность модели
- •1.3. Модель типа черного ящика
- •1.4. Основная предпосылка эконометрического анализа
- •1.5. Построение параметрической регрессионной модели
- •1.6. Классификация эконометрических моделн.
- •1.6.1. По структуре уравнений регрессии
- •1.6.2. По способу учета динамики:
- •1.6.3. По виду связи между
- •1.6.4. По алгоритму оценки параметров модели
- •1.7. Типы данных
- •1.7.1. Данные пространственного типа
- •1.7.2. Временной (динамический) ряд
- •1.8. Этапы построения эконометрической модели
- •Глава II. Корреляционный анализ
- •2.1. Цель корреляционного анализа
- •2.2. Числовые меры корреляционной связи
- •2.2.1. Ковариация
- •2.2.2. Выборочная оценка коэффициента линейной парной корреляции
- •2.2.3. Математический смысл коэффициента линейной парной корреляции
- •2.2.4. Статистический смысл коэффициента линейной парной корреляции
- •2.2.5. Геометрическая интерпретация коэффициента корреляции
- •2.3. Проверка статистической значимости коэффициента корреляции
- •2.4. Множественный корреляционный анализ
- •2.4.1. Корреляционная матрица
- •2.4.2. Выборочный линейный коэффициент множественной корреляции
- •2.4.3. Частный коэффициент корреляции
- •2.4.4. Коэффициент детерминации
- •2.4.5. Оценка значимости множественного коэффициента детерминации
- •2.4.6. Индекс корреляции при нелинейной связи двух случайных величин
- •2.4.7. Индекс множественной корреляции
- •2.5. Коэффициент ранговой корреляции
- •Глава III. Множественный регрессионный анализ
- •3.1. Постановка задачи
- •3.2. Метод наименьших квадратов (мнк) в скалярной форме
- •3.3. Матричная форма метода наименьших квадратов.
- •3.3.1.Уравнение наблюдений в матричной форме
- •3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
- •3.4. Предпосылки метода наименьших квадратов
- •3.5. Свойства оценок, получаемых по методу наименьших квадратов
- •3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
- •3.6.1.Гипотеза о близости к нулю математического ожидания остатков
- •3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
- •3.6.3. Гипотеза о статистической значимости всего уравнения регрессии в целом
- •3.6.4. Оценка качества уравнения регрессии
- •3.6.5. Скорректированный коэффициент детерминации
- •3.6.6. Проверка гипотезы о чисто случайном характере остатков
- •3.6.7. Проверка гипотезы о нормальном законе распределения остатков
- •3.7. Точечный прогноз и оценка доверительных интервалов прогноза
- •3.8. Оценка погрешностей расчета по уравнению регрессии
- •3.9. Коэффициент эластичности, бета-коэффициент и дельта-коэффициент для линейного уравнения регрессии
- •Глава IV. Временные ряды
- •4.1. Понятие о временных рядах, их классификация
- •4.2. Компонентный анализ временных рядов
- •4.3. Понятие случайного процесса
- •4.4. Понятие о коэффициенте корреляции во временном ряде. Автокорреляционная функция (акф)
- •4.5. Выборочная оценка коэффициента автокорреляции для числа степеней свободы
- •4.6. Частный коэффициент автокорреляции
- •4.7. Предварительный анализ временных рядов
- •4.8. Авторегрессионные модели.
- •Ar(p) – порядка p
- •4.9. Авторегрессионная модель скользящей средней
- •4.10. Разностные уравнения с лаговыми пременными
- •4.11. Оценка коэффициентов авторегрессионных моделей.
- •4.12. Прогнозирование по разностной авторегрессионной модели
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •5.1.Проблема спецификации переменных. Мультиколлинеарность
- •5.2.Способы устранения мультиколлинеарности
- •5.3. Метод пошаговой регрессии (конструктивный метод)
- •5.4. Деструктивный подход (“расщепления”) мультиколлинеарных пар
- •5.5.Случай нелинейных координатных функций
- •5.5.1.Формальная замена переменных
- •5.5.2. Специальное преобразование
- •5.6. Линейные уравнения регрессии с переменной структурой. Фиктивные переменные
- •5.7. Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных
- •5.8. Двухшаговый метод наименьших квадратов
- •Литература
1.3. Модель типа черного ящика
Эконометрическая модель, описывающая связи «вход-выход» объекта (процесса), для построения которой не требуется знания внутренней структуры объекта и сути процессов в нем, называется моделью черного ящик [8].
Здесь введены обозначения:
Y – зависимая (результативная, объясняемая, эндогенная) переменная, моделируемый показатель, выходная величина;
= (Х1,
…, Х2)
– вектор независимых (объясняющих,
экзогенных переменных); иногда вектор
называют вектором входных факторов,
регрессоров.
Термин «эндогенная переменная» означает внутренняя по отношению к моделируемой системе (объекту), т.е. это реакция (состояние) объекта в ответ на внешние (экзогенные) воздействия, задаваемые вектором независимых переменных . Модели типа «черного ящика» очень широко применяются в эконометрике.
1.4. Основная предпосылка эконометрического анализа
Суть основной предпосылки построения эконометрической модели состоит в возможности разбиения Y на две части : объясненную и случайную:
. (1.1)
Объясненная часть
случайной величины
,
формируется вариацией вектора независимых
переменных
;
E – случайная составляющая (остаток).
Если случайная
величина Y
непрерывна, то объясненная часть
представляет
собой некоторую неизвестную непрерывную
функцию от регрессоров
:
(1.2)
Естественной
аппроксимацией (описанием) случайной
функции
является оценка:
(1.3)
М[Х½х1, х2,… хn, ] - среднее значение случайной функции , т.е. условное математическое ожидание, полученное при условии, что вектор независимых переменных принял конкретное (фиксированное) значение:
Здесь и далее большими буквами X, Y будет обозначаться текущее значение случайных величин, а малыми буквами, x, y их конкретные (количественные) реализации.
В некоторых книгах используют более компактное обозначение:
(1.4)
Тогда основную предпосылку построения эконометрической модели можно записать так:
Y = Мх(Y) + E. (1.5)
Уравнение
Ye = Мх(Y) = j (х1, х2, …,хj,…, хn) (1.6)
называется уравнением регрессии. Заметим, что вид истинной функции в уравнении (1.6) нам пока неизвестен.
Замечание: Эконометрическая модель (1.6) не всегда является регрессионной, т.е. объясненная часть случайной величины не всегда равна своему условному математическому ожиданию:
Ye ¹ Мх(Y).
Пример: Пусть независимые переменные измерены с систематическими ошибками. Тогда неизвестная нам случайная функция в наблюдениях будет деформирована (искажена). В эконометрике это встречается часто. Существуют специальные методы борьбы с этим неприятным обстоятельством, которые будут рассмотрены ниже.
Критерием того, что модель (1.6) является регрессионной, является условие Мх(E) = 0. Действительно, записав основную предпосылку эконометрического анализа (1.5), вычислим математическое ожидание от обеих частей уравнения:
Мх(Y) = Мх [Мх(Y)] + Мх(E);Þ
Þ Мх(E) = 0
Условие (1.6) является
наиболее существенным условием получения
качественной модели. Статистически это
условие означает отсутствие систематического
смещения наблюдений
,
относительно линии
(или поверхности в многомерном случае)
регрессии.