
- •Глава I. Основные аспекты эконометрического моделирования
- •Глава II. Корреляционный анализ
- •Глава III. Множественный регрессионный анализ
- •Глава IV. Временные ряды
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •Введение Определение эконометрики
- •Значение эконометрики в экономике
- •Задачи эконометрики
- •Глава I. Основные аспекты эконометрического
- •1.1. Понятие о модели, системе
- •1.2. Адекватность модели
- •1.3. Модель типа черного ящика
- •1.4. Основная предпосылка эконометрического анализа
- •1.5. Построение параметрической регрессионной модели
- •1.6. Классификация эконометрических моделн.
- •1.6.1. По структуре уравнений регрессии
- •1.6.2. По способу учета динамики:
- •1.6.3. По виду связи между
- •1.6.4. По алгоритму оценки параметров модели
- •1.7. Типы данных
- •1.7.1. Данные пространственного типа
- •1.7.2. Временной (динамический) ряд
- •1.8. Этапы построения эконометрической модели
- •Глава II. Корреляционный анализ
- •2.1. Цель корреляционного анализа
- •2.2. Числовые меры корреляционной связи
- •2.2.1. Ковариация
- •2.2.2. Выборочная оценка коэффициента линейной парной корреляции
- •2.2.3. Математический смысл коэффициента линейной парной корреляции
- •2.2.4. Статистический смысл коэффициента линейной парной корреляции
- •2.2.5. Геометрическая интерпретация коэффициента корреляции
- •2.3. Проверка статистической значимости коэффициента корреляции
- •2.4. Множественный корреляционный анализ
- •2.4.1. Корреляционная матрица
- •2.4.2. Выборочный линейный коэффициент множественной корреляции
- •2.4.3. Частный коэффициент корреляции
- •2.4.4. Коэффициент детерминации
- •2.4.5. Оценка значимости множественного коэффициента детерминации
- •2.4.6. Индекс корреляции при нелинейной связи двух случайных величин
- •2.4.7. Индекс множественной корреляции
- •2.5. Коэффициент ранговой корреляции
- •Глава III. Множественный регрессионный анализ
- •3.1. Постановка задачи
- •3.2. Метод наименьших квадратов (мнк) в скалярной форме
- •3.3. Матричная форма метода наименьших квадратов.
- •3.3.1.Уравнение наблюдений в матричной форме
- •3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
- •3.4. Предпосылки метода наименьших квадратов
- •3.5. Свойства оценок, получаемых по методу наименьших квадратов
- •3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
- •3.6.1.Гипотеза о близости к нулю математического ожидания остатков
- •3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
- •3.6.3. Гипотеза о статистической значимости всего уравнения регрессии в целом
- •3.6.4. Оценка качества уравнения регрессии
- •3.6.5. Скорректированный коэффициент детерминации
- •3.6.6. Проверка гипотезы о чисто случайном характере остатков
- •3.6.7. Проверка гипотезы о нормальном законе распределения остатков
- •3.7. Точечный прогноз и оценка доверительных интервалов прогноза
- •3.8. Оценка погрешностей расчета по уравнению регрессии
- •3.9. Коэффициент эластичности, бета-коэффициент и дельта-коэффициент для линейного уравнения регрессии
- •Глава IV. Временные ряды
- •4.1. Понятие о временных рядах, их классификация
- •4.2. Компонентный анализ временных рядов
- •4.3. Понятие случайного процесса
- •4.4. Понятие о коэффициенте корреляции во временном ряде. Автокорреляционная функция (акф)
- •4.5. Выборочная оценка коэффициента автокорреляции для числа степеней свободы
- •4.6. Частный коэффициент автокорреляции
- •4.7. Предварительный анализ временных рядов
- •4.8. Авторегрессионные модели.
- •Ar(p) – порядка p
- •4.9. Авторегрессионная модель скользящей средней
- •4.10. Разностные уравнения с лаговыми пременными
- •4.11. Оценка коэффициентов авторегрессионных моделей.
- •4.12. Прогнозирование по разностной авторегрессионной модели
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •5.1.Проблема спецификации переменных. Мультиколлинеарность
- •5.2.Способы устранения мультиколлинеарности
- •5.3. Метод пошаговой регрессии (конструктивный метод)
- •5.4. Деструктивный подход (“расщепления”) мультиколлинеарных пар
- •5.5.Случай нелинейных координатных функций
- •5.5.1.Формальная замена переменных
- •5.5.2. Специальное преобразование
- •5.6. Линейные уравнения регрессии с переменной структурой. Фиктивные переменные
- •5.7. Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных
- •5.8. Двухшаговый метод наименьших квадратов
- •Литература
4.7. Предварительный анализ временных рядов
При сильном зашумлении данных перед идентификацией временные ряды целесообразно выполнить его предварительный анализ который обычно содержит три операции:
сглаживание временных рядов;
выявление и устранение аномальных наблюдений;
выявление временного тренда.
Целью операции сглаживания является элеминирование (ослабление) случайной составляющей временных рядов по отношению к трендовой составляющей. Особенно полезно делать сглаживание временных рядов в качестве предпроцессорной обработки данных пред построением уравнением регрессии, аппроксимирующего тренд во временных рядах. В сложных условиях моделирования (сильное зашумление данных, отягощенные дефицитом наблюдения) предварительное сглаживание временных рядов зачастую позволяет не адекватную регрессионную модель превратить в достаточно адекватную. Этому также способствует отбраковка аномальных наблюдений и более «мягких» подходов к оценке адекватности (снижения доверительной вероятности, на пример, до уровня 0,8… 0,85, если это позволяет постановка задачи).
В эконометрике применяются методы сглаживания:
Метод простой скользящей средней;
Метод взвешенной скользящей средней;
Метод эксионециального сглаживания
и д.р.[1].
Наиболее простой и распространенный метод – это метод простой скользящей средней (МПСС). Алгоритм этого метода задается формулой:
(4.6)
где
– сглаженные
значения уравнений временного ряда;
–
текущие не сглаженные
значения уровней;
m – количество точек в интервале сглаживания;
р – вспомогательный параметр (при нечетном m р=(m-1)/2);
i – индекс суммирования;
t – текущий момент времени наблюдения во временном ряде.
4.8. Авторегрессионные модели.
1. Назначение:
1). Случай, когда для обычной регрессии нарушаются предпосылки метода наименьших квадратов.
гетероскедантичность;
автокоррелированность остатков.
переход к авторегрессии может значительно улучшить адекватность модели.
2). Авторегрессия хорошо описывает колебательные процессы, на пример сезонные колебания.
В моделях авторегрессии вместо регрессора t выступают лаговые переменные
Лаговые переменные – это переменные, объясняющие моделируемую величину Y с некоторым запаздыванием. Второе отличие от классических временных рядов состоит в том, что объясняющие переменные суть случайные величины.
Ar(p) – порядка p
Структура модели имеет вид:
. (4.7)
т.е.
- есть линейная
комбинация значений Y
в предыдущие
моменты времени;
Здесь Y(t-1),….Y(t-p) – лаговые независимые переменные (переменные с запаздыванием);
AR(1) – это марковский случайный процесс (зависимость только от скорости - первых разностей):
(4.8)
Пример:
4.9. Авторегрессионная модель скользящей средней
«Moving average» - скользящая средняя.
ARMA - авторегрессионная модель скользящей средней.
Замечание:
Не следует путать авторегрессионную модель скользящей средней с методом простой скользящей средней при сглаживании временных рядов. В правой части этой модели стоят лаговые переменные по Y и остаткам et:
(4.9)