
- •Глава I. Основные аспекты эконометрического моделирования
- •Глава II. Корреляционный анализ
- •Глава III. Множественный регрессионный анализ
- •Глава IV. Временные ряды
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •Введение Определение эконометрики
- •Значение эконометрики в экономике
- •Задачи эконометрики
- •Глава I. Основные аспекты эконометрического
- •1.1. Понятие о модели, системе
- •1.2. Адекватность модели
- •1.3. Модель типа черного ящика
- •1.4. Основная предпосылка эконометрического анализа
- •1.5. Построение параметрической регрессионной модели
- •1.6. Классификация эконометрических моделн.
- •1.6.1. По структуре уравнений регрессии
- •1.6.2. По способу учета динамики:
- •1.6.3. По виду связи между
- •1.6.4. По алгоритму оценки параметров модели
- •1.7. Типы данных
- •1.7.1. Данные пространственного типа
- •1.7.2. Временной (динамический) ряд
- •1.8. Этапы построения эконометрической модели
- •Глава II. Корреляционный анализ
- •2.1. Цель корреляционного анализа
- •2.2. Числовые меры корреляционной связи
- •2.2.1. Ковариация
- •2.2.2. Выборочная оценка коэффициента линейной парной корреляции
- •2.2.3. Математический смысл коэффициента линейной парной корреляции
- •2.2.4. Статистический смысл коэффициента линейной парной корреляции
- •2.2.5. Геометрическая интерпретация коэффициента корреляции
- •2.3. Проверка статистической значимости коэффициента корреляции
- •2.4. Множественный корреляционный анализ
- •2.4.1. Корреляционная матрица
- •2.4.2. Выборочный линейный коэффициент множественной корреляции
- •2.4.3. Частный коэффициент корреляции
- •2.4.4. Коэффициент детерминации
- •2.4.5. Оценка значимости множественного коэффициента детерминации
- •2.4.6. Индекс корреляции при нелинейной связи двух случайных величин
- •2.4.7. Индекс множественной корреляции
- •2.5. Коэффициент ранговой корреляции
- •Глава III. Множественный регрессионный анализ
- •3.1. Постановка задачи
- •3.2. Метод наименьших квадратов (мнк) в скалярной форме
- •3.3. Матричная форма метода наименьших квадратов.
- •3.3.1.Уравнение наблюдений в матричной форме
- •3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
- •3.4. Предпосылки метода наименьших квадратов
- •3.5. Свойства оценок, получаемых по методу наименьших квадратов
- •3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
- •3.6.1.Гипотеза о близости к нулю математического ожидания остатков
- •3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
- •3.6.3. Гипотеза о статистической значимости всего уравнения регрессии в целом
- •3.6.4. Оценка качества уравнения регрессии
- •3.6.5. Скорректированный коэффициент детерминации
- •3.6.6. Проверка гипотезы о чисто случайном характере остатков
- •3.6.7. Проверка гипотезы о нормальном законе распределения остатков
- •3.7. Точечный прогноз и оценка доверительных интервалов прогноза
- •3.8. Оценка погрешностей расчета по уравнению регрессии
- •3.9. Коэффициент эластичности, бета-коэффициент и дельта-коэффициент для линейного уравнения регрессии
- •Глава IV. Временные ряды
- •4.1. Понятие о временных рядах, их классификация
- •4.2. Компонентный анализ временных рядов
- •4.3. Понятие случайного процесса
- •4.4. Понятие о коэффициенте корреляции во временном ряде. Автокорреляционная функция (акф)
- •4.5. Выборочная оценка коэффициента автокорреляции для числа степеней свободы
- •4.6. Частный коэффициент автокорреляции
- •4.7. Предварительный анализ временных рядов
- •4.8. Авторегрессионные модели.
- •Ar(p) – порядка p
- •4.9. Авторегрессионная модель скользящей средней
- •4.10. Разностные уравнения с лаговыми пременными
- •4.11. Оценка коэффициентов авторегрессионных моделей.
- •4.12. Прогнозирование по разностной авторегрессионной модели
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •5.1.Проблема спецификации переменных. Мультиколлинеарность
- •5.2.Способы устранения мультиколлинеарности
- •5.3. Метод пошаговой регрессии (конструктивный метод)
- •5.4. Деструктивный подход (“расщепления”) мультиколлинеарных пар
- •5.5.Случай нелинейных координатных функций
- •5.5.1.Формальная замена переменных
- •5.5.2. Специальное преобразование
- •5.6. Линейные уравнения регрессии с переменной структурой. Фиктивные переменные
- •5.7. Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных
- •5.8. Двухшаговый метод наименьших квадратов
- •Литература
3.5. Свойства оценок, получаемых по методу наименьших квадратов
Утверждение: Оценка по методу наименьших квадратов при выполнении предпосылок метода наименьших квадратов обладает важными статистическими свойствами:
1). Она несмещенная (не содержит систематических ошибок)
(M[bj]=
bj),
j=
. (3.15)
где bj, bj – соответственно генеральное значение параметра и его выборочная МНК - оценка
2). Оценка метода наименьших квадратов – состоятельная
(3.16)
Здесь x - сколько угодно малое число.
Другими словами,
при увеличении N
оценка
компонент вектора
становиться
все более точной, приближаясь к
генеральному значению по вероятности.
Заметим, что без этого свойства организация эксперимента была бы затруднительной.
3). Эффективность оценки (теорема Гаусса-Маркова).
Если уравнение
регрессии – это классическое нормальное
линейное уравнение регрессии, т.е.
удовлетворяются все предпосылки
регрессионного анализа, то в классе
линейных несмещенных оценок метода
наименьших квадратов оценка
является наиболее эффективной, т.е.
обладает наименьшей дисперсией.
3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
3.6.1.Гипотеза о близости к нулю математического ожидания остатков
Здесь используется критерий Стьюдента для остатков и проверяется нуль-гипотеза:
(3.17)
Så - среднее квадратичное отклонение остатков – мера рассеяния остатков относительно своего среднего
(3.18)
Замечание: Здесь число степеней свободы равно (N – 1), так как на вычисление среднего (центра рассеяния) расходуется одна степень свободы:
(3.19)
где Se-
среднее квадратичное отклонение
наблюдений Yi
относительно
поверхности регрессии
:
(3.20)
где, k – число членов уравнения регрессии, включая свободный член.
3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
Используя t – критерий Стьюдента проверяем нуль гипотезу:
(3.21)
где под корнем стоит значение диагонального элемента информационной матрицы Фишера.
Выводы:
Если данное неравенство выполнено, то коэффициент bj – статистически не значим.
Если все коэффициенты в уравнение регрессии не значимы то уравнение регрессии не значимо: влияние регрессоров Хj на формирование значений Y не различимо на фоне случайных возмущений {Ei}. Модель не адекватна.
Если все коэффициенты уравнения регрессии значимы, то нарушение адекватности в данном пункте (по данной гипотезе) нет. Но вывод об адекватности делать рано, должны быть выполнены все предпосылки метода наименьших квадратов.
Если часть коэффициентов уравнения регрессии значима, а часть не значима, то это не является снованием для нарушения адекватности. Значимая часть регрессоров может адекватно описывать объект.
Незначимые коэффициенты уравнения регрессии и соответствующие им регрессоры следует исключить из модели: они не несут никакой полезной информации.