
- •Глава I. Основные аспекты эконометрического моделирования
- •Глава II. Корреляционный анализ
- •Глава III. Множественный регрессионный анализ
- •Глава IV. Временные ряды
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •Введение Определение эконометрики
- •Значение эконометрики в экономике
- •Задачи эконометрики
- •Глава I. Основные аспекты эконометрического
- •1.1. Понятие о модели, системе
- •1.2. Адекватность модели
- •1.3. Модель типа черного ящика
- •1.4. Основная предпосылка эконометрического анализа
- •1.5. Построение параметрической регрессионной модели
- •1.6. Классификация эконометрических моделн.
- •1.6.1. По структуре уравнений регрессии
- •1.6.2. По способу учета динамики:
- •1.6.3. По виду связи между
- •1.6.4. По алгоритму оценки параметров модели
- •1.7. Типы данных
- •1.7.1. Данные пространственного типа
- •1.7.2. Временной (динамический) ряд
- •1.8. Этапы построения эконометрической модели
- •Глава II. Корреляционный анализ
- •2.1. Цель корреляционного анализа
- •2.2. Числовые меры корреляционной связи
- •2.2.1. Ковариация
- •2.2.2. Выборочная оценка коэффициента линейной парной корреляции
- •2.2.3. Математический смысл коэффициента линейной парной корреляции
- •2.2.4. Статистический смысл коэффициента линейной парной корреляции
- •2.2.5. Геометрическая интерпретация коэффициента корреляции
- •2.3. Проверка статистической значимости коэффициента корреляции
- •2.4. Множественный корреляционный анализ
- •2.4.1. Корреляционная матрица
- •2.4.2. Выборочный линейный коэффициент множественной корреляции
- •2.4.3. Частный коэффициент корреляции
- •2.4.4. Коэффициент детерминации
- •2.4.5. Оценка значимости множественного коэффициента детерминации
- •2.4.6. Индекс корреляции при нелинейной связи двух случайных величин
- •2.4.7. Индекс множественной корреляции
- •2.5. Коэффициент ранговой корреляции
- •Глава III. Множественный регрессионный анализ
- •3.1. Постановка задачи
- •3.2. Метод наименьших квадратов (мнк) в скалярной форме
- •3.3. Матричная форма метода наименьших квадратов.
- •3.3.1.Уравнение наблюдений в матричной форме
- •3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
- •3.4. Предпосылки метода наименьших квадратов
- •3.5. Свойства оценок, получаемых по методу наименьших квадратов
- •3.6. Оценка адекватности уравнения регрессии (проверка гипотез о предпосылках метода наименьших квадратов)
- •3.6.1.Гипотеза о близости к нулю математического ожидания остатков
- •3.6.2. Гипотеза о статистической значимости коэффициентов регрессии bj
- •3.6.3. Гипотеза о статистической значимости всего уравнения регрессии в целом
- •3.6.4. Оценка качества уравнения регрессии
- •3.6.5. Скорректированный коэффициент детерминации
- •3.6.6. Проверка гипотезы о чисто случайном характере остатков
- •3.6.7. Проверка гипотезы о нормальном законе распределения остатков
- •3.7. Точечный прогноз и оценка доверительных интервалов прогноза
- •3.8. Оценка погрешностей расчета по уравнению регрессии
- •3.9. Коэффициент эластичности, бета-коэффициент и дельта-коэффициент для линейного уравнения регрессии
- •Глава IV. Временные ряды
- •4.1. Понятие о временных рядах, их классификация
- •4.2. Компонентный анализ временных рядов
- •4.3. Понятие случайного процесса
- •4.4. Понятие о коэффициенте корреляции во временном ряде. Автокорреляционная функция (акф)
- •4.5. Выборочная оценка коэффициента автокорреляции для числа степеней свободы
- •4.6. Частный коэффициент автокорреляции
- •4.7. Предварительный анализ временных рядов
- •4.8. Авторегрессионные модели.
- •Ar(p) – порядка p
- •4.9. Авторегрессионная модель скользящей средней
- •4.10. Разностные уравнения с лаговыми пременными
- •4.11. Оценка коэффициентов авторегрессионных моделей.
- •4.12. Прогнозирование по разностной авторегрессионной модели
- •Глава V. Некоторые вопросы практического построения регрессионных моделей
- •5.1.Проблема спецификации переменных. Мультиколлинеарность
- •5.2.Способы устранения мультиколлинеарности
- •5.3. Метод пошаговой регрессии (конструктивный метод)
- •5.4. Деструктивный подход (“расщепления”) мультиколлинеарных пар
- •5.5.Случай нелинейных координатных функций
- •5.5.1.Формальная замена переменных
- •5.5.2. Специальное преобразование
- •5.6. Линейные уравнения регрессии с переменной структурой. Фиктивные переменные
- •5.7. Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных
- •5.8. Двухшаговый метод наименьших квадратов
- •Литература
Глава III. Множественный регрессионный анализ
3.1. Постановка задачи
Будем постулировать выполнение основной предпосылки эконометрического анализа (1.1) – (1.6).
Пусть имеется выборка пространственного типа, т.е. кортежи наблюдений:
1). Требуется получить уравнение регрессии, для объясненной части Mx(Y) случайной величины Y, т.е. получить параметрическую оценку:
– общем случае
нелинейная функция.
2). Требуется также, провести статистический анализ остатков {еi}, т.е. установить: адекватна ли модель, и оценить ее погрешность.
Замечание 1: Всю теорию регрессионного анализа мы будем излагать для аддитивной формы (структуры) модели которая более наглядно интерпретируется. В случае линейного уравнения регрессии виден отдельный вклад каждого входного фактора:
(3.1)
В частном случае, когда в структуре модели на каждый входной фактор выделена одна базисная функция имеем:
fa(xj)ºfj(xj); aºj; q=n; f0º1.
Пример:
=b0f0(x0)
+ b1x1
+ b2lnx2;
f0(x0)º1;
f1=x11;
f2ºlnx2.
Здесь каждый член отражает вклад своего фактора, в общем случае нелинейный.
Замечание 2: Вид координатных функций fa(xj) выбирается в соответствии с особенностями моделируемого объекта. Это могут быть функции:
степенные;
показательные;
экспотенциальные;
логарифмические;
тригонометрические и др.
Для колебательных процессов, например сезонных колебаний, хорошо подходят гармонические функции. Удобно подбирать вид базисных функций fa(xj) с помощью инструмента МS Excel «Мастер диаграмм».
3.2. Метод наименьших квадратов (мнк) в скалярной форме
Используя уравнение регрессии (3.1), запишем функцию цели Ф, характеризующую качество аппроксимации объясненной части Ye=Mx(Y) уравнением регрессии:
(3.2)
Это задача
безусловной оптимизации, т.е требуется
найти такие оптимальные значения
вектора
параметров уравнения регрессии, которые
доставляют минимум функции цели Ф.
Замечание 3: Для простоты далее считаем, что в уравнении регрессии каждый входной фактор xj предоставлен одним членом суммы со своей базисной функцией fj(xj), т.е. aºj.
В теории регрессионного анализа показано, что функция Ф непрерывна и строго выпукла по аргументам bj. Тогда ее минимум обеспечивается условием
(3.3)
Система (3.3)
называется системой нормальных уравнений.
Если вектор
входит в модель линейно, то эта система
представляет собой линейные алгебраические
уравнения относительно искомых параметров
{bj},
j=
.
Замечание 4: Под линейным вхождением {bj}, в модель понимается, что сами координаторные функции {fj(xj)} могут быть нелинейными, но они не должны содержать ни одного оцениваемого параметра bj.
Пример:
Здесь обе модели нелинейны по независимой переменной х. Однако вторая модель линейна по искомому параметру b0 , в тоже время как в первой модели параметр b1 входит в структуру модели нелинейно. Такие модели называются иногда «криволинейными» [11].
Если система нормальных уравнений есть система линейных алгебраических уравнений, то для ее решения можно использовать аппарат линейной алгебры и, соответственно, матричную форму метода наименьших квадратов [5].