
- •Глава 1. Основные понятия 5
- •Глава 2. Растровая графика. Базовые растровые алгоритмы 13
- •Глава 3. Векторная графика 53
- •Глава 4. Фрактальная графика 65
- •Глава 5. Цветовые модели компьютерной графики 71
- •Глава 6. Реалистическое представление сцен 109
- •Глава 7. Стандартизация в компьютерной графике 136
- •Глава 8. Форматы графических файлов 151
- •Глава 9. Технические средства кг (оборудование кг) 170
- •Глава 1. Основные понятия
- •1.1 Разновидности компьютерной графики
- •Полиграфия
- •Мультимедиа
- •Сапр и деловая графика
- •Геоинформационные системы (гис)
- •1.2. Принципы организации графических программ
- •Растровые программы
- •Векторные программы
- •Фрактальные программы
- •Глава 2. Растровая графика. Базовые растровые алгоритмы
- •2.1 Растровые изображения и их основные характеристики
- •2.2 Вывод изображений на растровые устройства
- •2.3 Методы улучшения растровых изображений
- •2.21. Диагональное расположение ячеек 5x5
- •2.22. Диагональные структуры: а - сдвиг строк ячеек, б - ячейки другого типа
- •2.24. Набор чм-ячеек 5x5
- •2.4. Базовые растровые алгоритмы Алгоритмы вывода прямой линии
- •Инкрементные алгоритмы
- •Кривая Безье
- •Алгоритмы вывода фигур
- •Алгоритмы закрашивания
- •Стиль заполнения
- •2.5 Инструменты растровых графических пакетов
- •Инструменты выделения. Каналы и маски
- •Выделение
- •Инструменты выделения и маскирования
- •Гистограммы
- •Тоновая коррекция изображения
- •Уровни (Levels)
- •Цветовая коррекция и цветовой баланс
- •Фильтры (Plug-ins) и спецэффекты (Effects)
- •2.6 Преимущества и недостатки растровой графики
- •Глава 3. Векторная графика
- •3.1 Средства создания векторных изображений
- •3.2 Сравнение механизмов формирования изображений в растровой и векторной графике
- •3.3 Структура векторной иллюстрации
- •3.4 Математические основы векторной графики
- •3.5. Элементы (объекты) векторной графики
- •3.6. Достоинства и недостатки векторной графики
- •Глава 4. Фрактальная графика
- •4.1 Математика фракталов. Алгоритмы фрактального сжатия изображений
- •4.2 Обзор основных фрактальных программ
- •Глава 5. Цветовые модели компьютерной графики
- •5.1 Элементы цвета
- •5.1.1 Свет и цвет
- •5.1.2 Физическая природа света и цвета
- •5.1.3 Излученный и отраженный свет
- •5.1.4 Яркостная и цветовая информация
- •5.1.5 Цвет и окраска
- •5.2 Характеристики источника света
- •5.2.1 Стандартные источники
- •5.2.2 Особенности восприятия цвета человеком
- •Колбочки и палочки
- •Спектральная чувствительность глаза к яркости
- •5.11. Спектральная чувствительность палочек и колбочек
- •Спектральная чувствительность наблюдателя
- •5.3 Цветовой и динамический диапазоны
- •5.4 Типы цветовых моделей
- •5.4.1 Аддитивные цветовые модели
- •Почему rgb-модель нравится компьютеру?
- •Ограничения rgb-модели
- •SRgb — стандартизированный вариант rgb-цветового пространства
- •5.4.2 Субтрактивные цветовые модели
- •Цветовая модель cmy
- •Ограничения модели cmyk
- •Возможности расширения цветового охвата cmyk
- •5.4.3 Перцепционные цветовые модели
- •Достоинства и ограничения hsb-модели
- •5.4.4 Системы соответствия цветов и палитры
- •Системы соответствия цветов
- •Назначение эталона
- •Кодирование цвета. Палитра
- •5.4.5 Триадные и плашечные цвета
- •5.4.6 Цветовые режимы
- •Глава 6. Реалистическое представление сцен
- •6.1 Закрашивание поверхностей
- •6.1.1 Модели отражения света
- •6.1.2 Вычисление нормалей и углов отражения
- •6.2 Метод Гуро
- •6.3 Метод Фонга
- •6.4. Имитация микрорельефа
- •6.5 Трассировка лучей
- •6.6 Анимация
- •Глава 7. Стандартизация в компьютерной графике
- •7.2 Международная деятельность по стандартизации в машинной графике
- •7.3 Классификация стандартов
- •7.4 Графические протоколы
- •7.4.1 Аппаратно-зависимые графические протоколы
- •Протокол tektronix
- •Протокол regis
- •Протокол hp-gl
- •7.4.2 Языки описания страниц
- •Язык PostScript
- •Язык pcl
- •7.4.3 Аппаратно-независимые графические протоколы
- •7.4.4 Проблемно-ориентированные протоколы
- •Глава 8. Форматы графических файлов
- •8.1 Векторные форматы
- •8.2 Растровые форматы
- •8.3 Методы сжатия графических данных
- •8.4 Преобразование файлов из одного формата в другой
- •Глава 9. Технические средства кг (оборудование кг)
- •9.1 Видеоадаптеры
- •9.2 Манипуляторы
- •9.3 Оборудование мультимедиа
- •9.4 Мониторы
- •9.5 Видеобластеры
- •9.6 Периферия
- •9.6.1 Принтеры
- •9.6.2 Имиджсеттеры
- •9.6.3 Плоттеры
- •9.7 Модемы
- •9.8 Звуковые карты
- •9.9 Сканеры
- •Планшетные сканеры
- •9.10 Секреты графических планшетов (дигитайзеров)
- •Достоинства и недостатки графических планшетов
- •9.11 Цифровые фотоаппараты и фотокамеры
- •Литература
Достоинства и ограничения hsb-модели
Модель HSB в отличие от моделей RGB и CMYK носит абстрактный характер. Отчасти это связано с тем, что цветовой тон и насыщенность цвета нельзя измерить непосредственно. Любая форма ввода цветовой информации всегда начинается с определения красной, зеленой и синей составляющих, на базе которых затем с помощью математического пересчета получают компоненты HSB-модели. В результате эта цветовая модель имеет то же цветовое пространство, что и RGB-модель, а значит, и присущий ей недостаток - ограниченное цветовое пространство.
Вместе с тем HSB-модель обладает по сравнению с RGB - и CMYK-моделями двумя важными преимуществами:
Аппаратной независимостью. Задание составляющих этой модели в виде значений цветового тона, насыщенности и яркости позволяют однозначно определить цвет без необходимости учета параметров устройства вывода.
Более простым и интуитивно понятным механизмом управления цветом.
Это связано с тем, что цветовой тон, насыщенность и яркость представляют собой независимые характеристики цвета. Например, чистый красный цвет расположен на цветовом круге под углом 0°. Если нужно сместить красный тон к оранжевому тону, то следует лишь несколько увеличить угол, определяющий цветовой тон. Для получения более блеклого цвета достаточно лишь снизить насыщенность, а для придания ему большей яркости соответственно увеличить значение яркости. Получение таких эффектов с помощью RGB-модели практически невозможно, поскольку значения ее цветовых компонентов очень сильно зависят друг от друга. Поэтому при изменении одной из ее составляющих, например красной, это окажет влияние не только на цветовой тон, но одновременно и на насыщенность и яркость.
5.4.4 Системы соответствия цветов и палитры
Как уже отмечалось ранее при рассмотрении цветовых моделей, каждая из них характеризуется собственным цветовым охватом. Это приводит к тому, что часть цветов, используемых в технологии многослойной печати, не может быть точно отображена на экране монитора. Кроме того, на воспроизведение цвета на экране монитора влияет множество других факторов: условия освещенности, срок эксплуатации, точность его настройки. Поэтому нельзя выбирать нужный нам цвет непосредственно на экране дисплея.
С целью повышения точности воспроизведения цвета на этапе печати в современные графические программы включены системы сопоставления цветов и палитры, которые предоставляют в ваше распоряжение еще один способ назначения
цветов, альтернативный цветовым моделям.
Системы соответствия цветов
Для упрощения процедуры идентификации цвета ведущими фирмами, специализирующимися в области полиграфии и производстве красителей, были созданы
системы соответствия цветов.
Система соответствия цветов включает в себя набор следующих основных компонентов:
Эталонные таблицы (атласы или каталоги) цветов, содержащихся в одноименных палитрах.
Электронные палитры (или просто палитры).
Специальные программные и аппаратные средства для калибровки устройств вывода.
Назначение эталона
Эталонные таблицы предоставляют собой набор цветов (образцов), которые могут быть адекватным образом отображены в процессе печати на соответствующей им бумаге.
Изготовление эталона тщательно контролируется с целью минимизации вариаций цветов. Каждому цвету присваивается свое уникальное имя и указывается тип пигмента или состав смеси из различных пигментов, необходимых для его реализации. Указывается также идентифицированный с данным пигментом тип бумаги. В дополнение к этой таблице, используемой как справочник, пользователь получает образцы цветов, которые можно вырезать и прикрепить к изображению. Благодаря этим образцам система обеспечивает точный визуальный контроль соответствия того, что мы видим на экране, с тем, что мы получим на печати. Типичными примерами атласов цветов (или, как их еще называют, цветовых образцов) являются каталоги фирм TRUMATCH и Pantone, известные под названиями Colorfinder и Process Color Guide (рис. 5.30).
Рис. 5.30. Примеры оформления эталонных образцов цветов фирм TRUMATCH и Pantone
Вы можете выбрать из них нужные вам цвета, затем определить соответствующее им процентное содержание каждого из компонентов CMYK-модели и быть уверенными, что они точно отобразятся при печати (даже если цвет на экране не соответствует цвету выбранного вами образца).
Каждая из рассмотренных систем соответствия цветов имеет два варианта атласов образцов с одними и теми же CMYK-цветами, напечатанными на мелованной и немелованной бумаге.
Реальность такова, что цвет, напечатанный на немелованной бумаге, выглядит более темным и приглушенным по сравнению с аналогичным цветом, напечатанным на мелованной бумаге. Поэтому если вы собираетесь использовать при печати оба вида бумаги, вам понадобятся два каталога цветовых образцов.
В современных программах графики, таких как программа CorelDRAW, электронные палитры систем соответствия цветов поставляются вместе с высококачественными копиями цветных каталогов.