
- •Введение
- •1.Понятие экономической информационной системы (эис)
- •1.1. Понятие системы
- •1.2. Понятие эис. Назначение эис
- •1.3.Классификация эис
- •1.4. Основные принципы и методы построения эис
- •1.4.1. Принципы построения и функционирования эис.
- •1.4.2.Структурный и объектно-ориентированный подходы к проектированию.
- •1.4.3.Понятие жц эис.
- •2.Теоретические основы работы с информацией
- •2.1. Понятие информации
- •2.2. Измерение количества информации
- •Задания на дом
- •2.3.Кодирование информации
- •2.3.1.Оптимальное основание кода
- •2.3.2.Запись натурального числа в двоичной системе
- •2.3.3.Код Грэя
- •2.3.4.Оптимальное кодирование
- •2.3.5.Помехозащищенное кодирование
- •2.4.Методы организации данных в памяти эвм
- •2.4.1.Типы данных, структуры данных и абстрактные типы данных
- •2.4.2.Время выполнения программ
- •2.4.3.Списки
- •2.4.4.Реализация списков
- •Реализация списков посредством массивов
- •Реализация списков с помощью указателей
- •Реализация списков с помощью курсоров
- •2.4.5.Стеки
- •2.4.6.Реализация стеков
- •2.4.7.Очереди
- •2.4.8.Реализация очередей
- •2.4.9.Графы и деревья
- •2.4.10.Некоторые сд для хранения графов и деревьев
- •3.Особенности работы с экономической информацией
- •3.1.Классификация и кодирование экономической информации.
- •3.2.Единая система классификации и кодирования
- •3.3.Штриховое кодирование
- •Алгоритм расчета контрольного разряда ean
- •4.Модели данных
- •4.1.Атрибуты, составные единицы информации, показатели, документы
- •4.2.Операции над сеи
- •4.3.Реляционная модель данных
- •4.3.1. Отношения, как основа реляционной модели данных
- •4.3.2. Операции над отношениями
- •Операции объединения, пересечения и разности отношений
- •Операция декартова произведения отношений
- •Отношение «список программистов» и результат выполнения проекции
- •Операция натурального соединения отношений
- •4.3.3. Нормализация отношений
- •4.3.4. Функциональные зависимости
- •4.3.5. Нормальные формы
- •Результат первого шага приведения к 2нф отношения преподаватель_предмет (отношение преподаватель в 2нф)
- •Результат первого и второго шагов приведения к 2нф отношения преподаватель_предмет (все отношения в 2нф)
- •4.3.8. Пример проектирования реляционной бд
- •5.Модели знаний
- •5.1. Классификация знаний
- •5.2. Продукционная модель представления знаний
- •5.3.Представление знаний в виде семантической сети
- •5.4. Фреймовая модель представления знаний
- •5.5. Логическая (предикатная) модель представления знаний
- •6.Моделирование предметных областей в экономике
- •6.1.Понятие модели предметной области
- •6.2.Структурная модель предметной области
- •6.2.1.Функциональная методология idef0
- •6.2.2. Функциональная методика потоков данных
- •6.3.Объектная модель предметной области
- •6.4. Сравнение методик моделирования предметной области
- •7.Алгоритмы, наиболее часто использующиеся при обработке информации в эис
- •7.1.Алгоритмы поиска
- •7.1.1.Поиск элемента в неупорядоченном массиве
- •7.1.2.Поиск элемента в упорядоченном массиве.
- •7.1.3.Фонетический поиск
- •7.2.Алгоритмы сортировки
- •7.2.1.Сортировка методом пузырька.
- •7.2.2.Сортировка вставками
- •7.2.3.Сортировка выбором
- •7.2.4.Пирамидальная сортировка
- •7.2.5.Быстрая сортировка.
- •7.2.6.Сортировка слиянием
- •7.3.Поиск на графах
- •7.3.1.Поиск в глубину
- •7.3.2.Поиск в ширину
- •7.4.Топологическая сортировка графа
- •7.5.Сетевое планирование
- •7.5.1.Алгоритм расчета наиболее ранних сроков наступления событий
- •7.5.2.Алгоритм расчета наиболее поздних сроков наступления событий
- •7.5.3.Алгоритм расчета резервов времени.
- •Литература Рекомендуемая основная литература
- •Рекомендуемая дополнительная литература
- •Приложение 1.Форматы штрих-кодов
- •Приложение 2. Коды некоторых стран
7.3.Поиск на графах
На практике часто возникают задачи, связанные с прохождением по вершинам графа. Например, необходимо ответить на вопрос: достижима ли вершина d из вершины r? То есть, существует ли путь из вершины r в вершину d.
Для ответа на вопрос, достижима вершина d из вершины r или нет, необходимо организовать обход вершин графа, начиная из вершины r. Если во время обхода мы встретим вершину d, следовательно, вершина d достижима из вершины r, в противном случае - d из r не достижима.
Существует два способа организации обхода: поиск в глубину и поиск в ширину.
7.3.1.Поиск в глубину
Поиск в глубину на графе G=(V,E) осуществляется по следующим правилам:
Начинаем поиск с начальной вершины r. В качестве текущей вершины v берем вершину r.
Из текущей вершины v двигаемся в любую, ранее не пройденную вершину w, если такая вершина найдется (если вершины w нет, см. пункт 3). Запоминаем дугу, по которой мы попали в вершину w. В качестве текущей вершины v берем вершину w.
Если из вершины v мы не можем попасть в ранее не пройденную вершину w, то возвращаемся в вершину x, из которой мы попали в v. В качестве текущей вершины v берем вершину x.
Процесс поиска (пункты 2, 3) заканчивается, когда мы пытаемся вернуться назад из вершины, с которой начался поиск (вершина r).
Поиск в глубину проиллюстрирован на рис. 7.15.
Алгоритм поиска в глубину представлен укрупненной блок-схемой на рис.7.16.
В алгоритме поиска в глубину требуется определять номер неокрашенной вершины (k) смежной вершине v (см. рис.7.16). Данные действия проще всего реализовать, когда исходный граф хранится матрицей смежности или упакованной матрицей смежности (см. разд.2.4.10).
В алгоритме используются операции со стеком. Реализация стека может быть любой: на массиве, с помощью указателей или курсоров. Наиболее рационально реализовать стек на массиве (см. разд.2.4.6). Это связано с тем, что максимальная глубина стека не может превышать числа вершин графа.
Для окраски вершин графа (см. рис.7.16, оператор «Окрасить вершину K») следует использовать множество. В данное множество заносятся окрашенные вершины. Если в алгоритмическом языке стандартный тип «множество» отсутствует, то для реализации множества можно использовать массив M длины n, где n - число элементов множества. Элементами массива M являются числа 0 и 1, причем, M[i]=0, если i-ый элемент принадлежит множеству и M[i]=1, если i-ый элемент не принадлежит множеству. В этом случае оператор «Окрасить вершину K» реализуется следующим образом: M[K]:=1.
Отметим, что дуги, по которым осуществляется обход графа (окрашенные дуги) в результате выполнения алгоритма поиска, образуют ориентированное дерево с корнем в начальной вершине. Поэтому для окраски дуги графа (см. рис.7.16, оператор «Окрасить дугу (v,K)») следует использовать массив P, хранящий ориентированное дерево (см. разд. 2.4.8). В этом случае оператор «Окрасить дугу (v,K)» реализуется следующим образом: P[K]:=v.
Полностью реализация алгоритма поиска в глубину представлена в листинге 7.9.
Листинг 7.9
Const
maxN =100; {Максимальное число вершин графа}
Type
tGraf=array[1.. maxN,1.. maxN] of boolean; {Тип для хранения матрицы смежности}
tO= array[1.. maxN] of boolean; {Тип для хранения признаков окраски вершин}
tP=array[1.. maxN] of integer; {Тип для хранения дерева из окрашенных дуг}
Здесь должно быть описание типа STACK – стек и операторов
NULLSTACK, EMPTYSTACK, PUSH, POP, TOP (см. Разд.2.4.5 и 2.4.6)
Var
A:tGraf; {Матрица смежности}
N:integer; {Число вершин}
Start:integer; {Начальная вершина}
P:tP; {Дерево из окрашенных дуг}
Procedure PoiskGl(A:tGraf; N,Start:integer; var O:tO; var P:tP); {Поиск в глубину}
var i,v,k:integer; S:STACK;
function SmVer(v:integer):integer;
{Возвращает номер неокрашенной вершины смежной вершине v, если такая вершина есть,
и 0 – в противном случае}
var i:integer;
begin
i:=1;
while not((i>N)or(A[v,i]=1)and(O[i]=false)) do i=i+1;
if i>N then SmVer:=0 else SmVer:=i
end;
begin
for i:=1 to N do {Все вершины и дуги графа не окрашены}
begin O[i]:=false; P[i]:=0 end;
EMPTYSTACK(S); {S <=пустой стек}
PUSH(Start,S); {S<= начальная вершина }
v:=Start; {v= начальная вершина }
O[v]:=true; {Окрасить вершину v}
While not EMPTY(S) do {Стек не пуст?}
begin
k:=SmVer(v); {k – номер неокрашенной вершины смежной вершине v,
если такая вершина есть, и k=0, в противном случае }
if k<>0 then
begin
O[k]:=true; {Окрасить вершину k}
P[k]:=v; {Окрасить дугу (v,k)}
PUSH(k,S); {S<=k}
v:=k;
end
else
begin
POP(S); {Удалить вершину стека S}
if not EMPTY(S) then {Стек S не пуст ?}
V:=TOP(S) {v=вершина стека S}
end
end
end;
Далее должен быть ввод графа, вызов процедуры PoiskGl и вывод результатов поиска.