
- •Введение
- •1. Методические указания по изучению дисциплины
- •Строение металлов
- •Вопросы для самопроверки
- •Теория сплавов
- •3. Пластическая деформация и механические свойства металлов
- •Влияние нагрева на структуру и свойства деформируемого металла
- •Железо и его сплавы
- •6. Теория термической обработки стали
- •Технология термической обработки
- •Химико–термическая обработка стали и поверхностное упрочнение наклепом
- •Конструкционные стали
- •Инструментальные стали
- •Специальные сплавы
- •1.12. Алюминий, магний и их сплавы
- •Вопросы для самопроверки
- •1.13. Медь и ее сплавы
- •Вопросы для самопроверки
- •Титан и его сплавы
- •1.15. Полимерные материалы
- •1.16. Резиновые материалы
- •1.17. Силикатные материалы
- •1.18. Композиционные материалы
- •2. Задания к контрольной работе Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •3. Методические указания к выполнению контрольной работы
- •Библиографический список
- •5. Технология конструкционных материалов и материаловедение: учеб - ное пособие / Коротких м.Т. - Спб: сгпу, 2004. - 104с.
- •6. Новые материалы / под науч. Ред. Ю.С. Карабасова, - м.: Мисис, 2002 - 738 с.
СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ
АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ
имени академика М.Ф. Решетнева
Г.Ю. Юрьева
С.В. Прокопьев
МАТЕРИАЛОВЕДЕНИЕ
Методические указания и контрольные задания для студентов
машиностроительных специальностей заочной формы обучения
Красноярск
2012
УДК 669.017(07)
Рецензент: кандидат технических наук,
доцент Л.Н. Самойлова
Материаловедение: Методические указания и контрольные задания для студентов машиностроительных специальностей заочной формы обучения/Сост. Г.Ю. Юрьева, С.В.Прокопьев; СибГАУ, Красноярск, 2012. С.
Введение
Метериаловедение - это прикладная наука, изучающая связи между строением (или структурой), составом и свойствами материалов. Кратко в математической форме это можно выразить следующим образом:
Свойства = f (химический состав, структура)
Структура материала весьма чутко реагирует на внешние механические, термические и физические воздействия. Поэтому закономерности влияния этих факторов на структуру и, в конечном счете, свойства материалов также является предметом изучения материаловедения.
Дисциплина «Материаловедение» основывается на курсах «Физика» и «Химия». Из курса «Химия» в материаловедении используются: основные сведения о строении атомов, периодическая система Д.И.Менделеева; типы связей в твердых телах; общая характеристика химических элементов и их соединений; теория коррозии металлов; полимерные материалы.
Курс «Материаловедение» состоит из двух разделов: первый- теоретические основы материаловедения. В этом разделе изучаются свойства материалов, а также влияние на эти свойства эксплуатационных факторов; атомно-кристаллическое строение металлов и сплавов; диаграммы состояния; формирование структуры и свойств при кристаллизации и пластической деформации; диаграмма железоуглеродистых сплавов; теория термической обработки.
Во втором разделе изучаются структура и свойства конкретных классов материалов (практическое материаловедение).
Все материалы, применяемые в машиностроении, исходя из их природы, можно разделить на следующие основные группы:
1. Металлические материалы, к которым относятся:
сплавы на основе железа – чистое железо, стали, чугуны;
стали и сплавы с особыми физическими свойствами (магнитные и немагнитные стали и сплавы, аморфные сплавы, сплавы с высоким электрическим сопротивлением, сплавы с эффектом памяти формы и т.д.);
цветные металлы и сплавы – алюминий и сплавы на его основе (деформирующиеся и литейные; упрочняемые и не упрочняемые термической обработкой), медь и сплавы на ее основе (латуни, бронзы), титан и сплавы на его основе, подшипниковые сплавы и др.
композиционные материалы с металлической матрицей;
2. Неметаллические материалы:
полимерные органические материалы – пластмассы (термореактивные и термопластичные), резины;
композиционные материалы с неметаллической матрицей (стекло-пластики, углепластики, оргпластики и др.);
неорганические материалы (стекло, ситаллы, керамика);
Кроме того, возможна классификация конструкционных материалов по свойствам, определяющим выбор материала для конкретных деталей конструкций. Каждая группа материалов оценивается соответствующими критериями, обеспечивающими работоспособность в эксплуатации.
В соответствии с выбранным принципом классификации все конструкционные материалы подразделяют на следующие группы:
материалы, обеспечивающие жесткость, статическую и циклическую прочность (стали);
материалы с особыми технологическими свойствами;
износостойкие материалы;
материалы с высокими упругими свойствами;
материалы с малой плотностью;
материалы с высокой удельной прочностью;
материалы, устойчивые к воздействию температуры и рабочей среды.
Появление новых конструкционных материалов и разработка технологий их получения являются объективной необходимостью технического и социального развития общества. Это видно из краткого перечня основных направлений использования новых перспективных материалов:
для информационных технологий (оптические и магнитные запоминающие системы, электронные приборы, дисплеи);
для транспортных средств (автомобилестроение, аэрокосмическая техника, железнодорожный и водный транспорт);
для тепло- и электроэнергетики (электростанции, системы накопления и распределения энергии, системы хранения и транспортировки топлива, системы для возобновления энергии);
для станкоинструментальной промышленности;
для медицинской техники (хирургический инструмент, протезы, имплантанты);
строительные материалы.
Возрастание требований потребителей к свойствам конструкционных материалов можно свести к следующим показателям:
повышению удельных механических свойств (прочность, упругость и т.п. в расчете на единицу массы или удельного веса), что должно обеспечивать снижение массы изделий и затрат на их эксплуатацию;
повышению сопротивляемости материала воздействию рабочей среды (температуры, агрессивности среды, радиационному излучению и т.п.);
повышению долговечности (ресурса службы) материала и его надежности в эксплуатации.
Одним из ведущих высокотехнологических потребителей новых металлических материалов является аэрокосмический комплекс. В этом комплексе новые материалы должны обеспечить повышение безопасности полетов, снижение эксплуатационных расходов, в том числе снижение расхода топлива и загрязнения окружающей среды в процессе эксплуатации летательных аппаратов.
Особенно остро стоит проблема повышения ресурса и экологической чистоты двигателей. В настоящее время в России средний ресурс двигателей составляет около 14000 часов по сравнению с 29000 часов двигателей фирмы «Роллс-Ройс» и 30000 часов у двигателей серии CFM-56. Двигателями CFM-56 оснащены более 70% мирового парка самолетов вместимостью более 100 мест.
Ответственные задачи стоят перед мировой энергетикой. В ближайшие 20 лет мировое производство электроэнергии должно возрасти в два раза при условии повышения экономичности ее производства и снижения вредного воздействия на окружающую среду, что требует использования новых металлических и неметаллических материалов.
В автомобилестроении основным направлением развития является создание легких, безопасных, комфортабельных и экологически чистых в эксплуатации моделей. В США средняя масса легкового автомобиля в 1975 году составила 1800 кг, в 1990 г – 1350 кг. Специальной программой PNGV намечено довести эту величину до 750 кг, создав модели с расходом топлива 3,5 литра на 100 км. Аналогичные программы разрабатываются в Европе. Для достижения этих целей должны широко использоваться легкие металлы (Al, Mg, Be) и их сплавы, металлические и неметаллические композиты, керамика. На железнодорожном и водном транспорте главными целями развития являются повышение экономичности и экологической безопасности при снижении массы транспортных средств и повышении их энерговооруженности.
Для достижения вышеуказанных целей разрабатываются новые виды металлических и неметаллических материалов.
Особое внимание уделяется легким цветным металлам и сплавам на их основе; материалам, имеющим мелкодисперсную и ультрамелкодисперсную структуру, монокристаллическим, аморфным и порошковым материалам.
Такие структуры обеспечивают прочностные характеристики иногда на порядок превышающие традиционные значения прочности и придают материалам особые технологические, физические и эксплуатационные свойства.
Материалы с такими структурами служат основой для создания различного рода композиционных материалов, деталей, полученных методами порошковой металлургии, и других деталей, обладающих специальными свойствами.