
- •Литература к курсу: “Оптика. Физика атома и атомного ядра.”
- •Лекция 1. Введение. Электромагнитные волны. Плоская световая волна. Фазовая и групповая скорость. Взаимодействие света с веществом. Дисперсия света. Поглощение света. Закон Бугера.
- •1. Развитие представлений о природе света.
- •2. Электромагнитные волны
- •Следствия теории Максвелла:
- •3. Излучение электромагнитных волн.
- •4.Энергия электромагнитных волн. Импульс электромагнитного поля.
- •5. Взаимодействие электромагнитных волн с веществом.
- •5.1.Отражение и преломление света диэлектриками.
- •5.2. Поглощение (абсорбция) света
- •5.3. Дисперсия света
- •5.4. Давление света.
- •Лекция 2. Интерференция света
- •6. Когерентность
- •7. Расчет интерференционной картины от двух источников (опыт Юнга).
- •8. Методы наблюдения интерференции света
- •9. Интерференция света в тонких пленках
- •11.Применение интерференции света
- •Лекция 3. Дифракция света
- •11. Дифракция волн. Принцип Гюйгенса—Френеля
- •12. Метод зон Френеля. Прямолинейное распространение света
- •13. Дифракция сферических волн.
- •14. Дифракция плоских световых волн
- •2. Дифракция Фраунгофера на двух одинаковых параллельных щелях.
- •3. Дифракция Фраунгофера на одномерной дифракционной решетке.
- •3. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •15. Рассеяние света (на самостоятельное изучение)
- •16. Разрешающая способность оптических приборов
- •17. Понятие о голографии
- •Лекция 4. Поляризация света.
- •17. Естественный и поляризованный свет
- •18.Анализ поляризованного света.
- •19. Способы получения поляризованного света.
- •1. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •2. А. Пропускание света через среды, обладающие естественной оптической анизотропией.
- •Поляризационные призмы и поляроиды
- •2.В. Искусственная оптическая анизотропия
- •20. Интерференция поляризованного света. Прохождение плоскополяризованного света через кристаллическую пластинку.
- •21. Вращение плоскости поляризации Естественное вращение.
- •Магнитное вращение.
20. Интерференция поляризованного света. Прохождение плоскополяризованного света через кристаллическую пластинку.
П
или
разность фаз
где
d—толщина
пластинки,
—длина
волны в вакууме.
.
Так как в обыкновенном и необыкновенном лучах колебания светового вектора совершаются во взаимно перпендикулярных направлениях, то на выходе из пластинки в результате сложения этих колебаний возникают световые волны, вектор Е ( , и Н) в которых меняется со временем так, что его конец описывает эллипс, ориентированный произвольно относительно координатных осей. Таким образом, в результате прохождения через кристаллическую пластинку плоскополяризованный свет превращается в эллиптически поляризованный.
Обыкновенный и необыкновенный лучи, возникающие из луча линейно поляризованного света при его двойном лучепреломлении, когерентны.
Вырезанная параллельно оптической оси пластинка, для которой оптическая разность хода
(m=0,
1,2,...), (20.1)
называется
пластинкой в четверть волны (пластинкой
).
Знак плюс
соответствует отрицательным
кристаллам, минус — положительным. При
прохождении через такую пластинку
обыкновенный и необыкновенный лучи
приобретают разность фаз
.
Плоскополяризованный свет, пройдя
пластинку
,
на выходе превращается в эллиптически
поляризованный (в частном случае
циркулярно поляризованный). Конечный
результат определяется разностью
фаз и углом.
Пластинка,
для которой
(m=0, 1,2,...),
(20.1)
называется
пластинкой в полволны и
т. д. Пластинка поворачивает плоскость
колебаний прошедшего через нее света
на угол
.
В циркулярно поляризованном свете разность фаз между любыми двумя взаимно перпендикулярными колебаниями равна . Если на пути такого света поставить пластинку , то она внесет дополнительную разность фаз . Результирующая разность фаз станет равной 0 или . , циркулярно поляризованный свет, пройдя пластинку , становится плоскополяризованным. Если теперь на пути луча поставить поляризатор, то можно добиться полного его гашения. Если же падающий свет естественный, то он при прохождении пластинки таковым и останется (ни при каком положении пластинки и поляризатора погашения луча не достичь).
Таким образом, если при вращении поляризатора при любом положении пластинки интенсивность не меняется, то падающий свет естественный. Если интенсивность меняется и можно достичь полного гашения луча, то падающий свет циркулярно поляризованный, если полного гашения не достичь, то падающий свет представляет смесь естественного и циркулярно поляризованного.
Если на пути эллиптически поляризованного света поместить пластинку , оптическая ось которой ориентирована параллельно одной из осей эллипса, то она внесет дополнительную разность фаз . Результирующая разность фаз станет равной нулю или л. Следовательно, эллиптически поляризованный свет, пройдя пластинку , повернутую определенным образом, превращается в плоскополяризованный и может быть погашен поворотом поляризатора. Этим методом можно отличить эллиптически поляризованный свет от частично поляризованного или циркулярно поляризованный свет от естественного.