
- •Лекция 6.
- •Глава 3. Основы молекулярной физики и термодинамики.
- •§1.Основные понятия.
- •Внешние.
- •Внутренние.
- •§2.Законы идеальных газов.
- •Р Дано: , , , ешение:
- •Р Дано: ешение:
- •Р Дано: , , , , , ешение:
- •Р Дано: , , ешение:
- •§3.Молекулярно-кинетическая теория газов.
- •Распределение частиц во внешних полях.
- •Опытное обоснование молекулярно-кинетической теории.
- •Р Дано: , , , , ешение:
- •Р Дано: ешение:
- •Р Дано: , , ешение:
- •Лекции 7-8.
- •§4.Физические основы термодинамики. Внутренняя энергия системы.
- •Теплообмен. Явления переноса.
- •Вакуум и методы его получения.
- •Работа.
- •Первый закон термодинамики.
- •Р Дано: , , ешение:
- •Решение:
- •Обратимые и необратимые процессы.
- •Энтропия.
- •Круговые процессы. Цикл Карно.
- •Второй закон термодинамики.
- •Третий закон.
- •Р Дано: , , , , ешение:
- •Р Дано: , , , ешение:
- •Решение:
- •Решение:
- •Решение:
- •§5.Реальные газы. Жидкости. Реальные газы.
- •Изотермы реальных газов.
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Решение:
Второй закон термодинамики.
Первый закон термодинамики, выражающий всеобщий закон сохранения и превращения энергии, не позволяет определить направление протекания термодинамических процессов.
Например, основываясь на этом законе, можно было бы пытаться построить вечный двигатель второго рода, т. е. двигатель, рабочее тело которого, совершая круговой процесс, получало бы энергию в форме тепла от одного внешнего тела и целиком передавало бы ее в форме работы другому внешнему телу.
Обобщение результатов многочисленных экспериментов привело к выводу о невозможности построения вечного двигателя второго рода. Этот вывод называется вторым законом термодинамики и имеет ряд формулировок, различных по форме, но эквивалентных по существу, в частности:
а) невозможен процесс, единственным результатом которого является превращение тепла, полученного от нагревателя, в эквивалентную ему работу;
б) невозможен процесс, единственным результатом которого является передача энергии в форме тепла от холодного тела к горячему.
Второй
закон термодинамики:
энтропия
замкнутой системы при любых происходящих
в ней процессах не уменьшается – она
возрастает при необратимых процессах
и остается постоянной в случае обратимых
процессов:
Второй закон термодинамики указывает на существенное различие двух форм передачи энергии - теплоты и работы. Он утверждает, что процесс преобразования упорядоченного движения тела как целого в неупорядоченное движение частиц самого тела и внешней среды является необратимым. Упорядоченное движение может переходить в неупорядоченное без каких-либо дополнительных (компенсирующих) процессов, например при трении. В то же время обратный переход неупорядоченного движения в упорядоченное, или, как часто неточно говорят, «переход тепла в работу», не может являться единственным результатом термодинамического процесса, т. с. всегда должен сопровождаться каким-либо компенсирующим процессом. Например, при равновесном, изотермическом расширении идеальный газ совершает работу, которая полностью эквивалентна теплу, переданному газу нагревателем. Однако плотность газа при этом уменьшается, т. е. «превращение тепла в работу» не является единственным результатом рассматриваемого процесса. Тепловой двигатель, работающий по прямому циклу Карно, совершает работу, эквивалентную лишь части полученного от нагреватели тепла, так как остальная часть последнего отдается холодильнику, состояние которого вследствие этого изменяется. В холодильной машине тепло передается от холодного тела к горячему. Однако дли осуществления этого процесса необходим компенсирующий процесс совершения работы внешними телами.
Третий закон.
Первый и второй законы термодинамики не позволяют определить значение S0 энтропии системы при абсолютном нуле температуры (T = 0°К). В связи с этим оказывается невозможным теоретический расчет абсолютных значений энтропии, изохорно-изотермного и изобарно-изотермного потенциалов системы, а также константы равновесия.
На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон, устранивший указанную трудность и получивший название принципа Нернста или третьего закона термодинамики.
В
формулировке Нернста он гласит: в
любом изотермическом процессе, проведенном
при абсолютном нуле температуры,
изменение энтропии системы равно нулю,
т. е.
,
,
независимо от изменения любых других параметров состояния (например, объема, давления, напряженности внешнего силового поля и т. д.). Иными словами, при абсолютном нуле температуры изотермический процесс является также и изоэнтропийным.
Из третьего закона термодинамики следует:
для всех тел при T = 0°К обращаются в нуль теплоемкости Сp и СV и термодинамический коэффициент расширяемости .
вывод о невозможности осуществления такого процесса, в результате которого тело охладилось бы до температуры T = 0°К (принцип недостижимости абсолютного нуля температуры).
Принцип Нернста был развит Планком, предположившим, что S0 = 0: при абсолютном нуле температуры энтропия системы равна нулю. Физическое истолкование принципа Нернста в формулировке Планка дается в статистической физике.
Условие S0 = 0 при T = 0°К является следствием квантового характера процессов, происходящих в любой системе при низких температурах, и выполняется только для систем находящихся при Т = 0°К в состоянии устойчивого, а не метастабильного равновесия. На основании гипотезы Планка можно определить абсолютные значения энтропии системы в произвольном равновесном состоянии.
Пример 3.4.4. Один моль идеального двухатомного газа, занимающего объем 12,3 л под давлением 2 атм, нагревается при постоянном объеме до давления 3 атм. Далее газ расширяется при постоянном давлении до объема 24,6 л, после чего охлаждается при постоянном объеме до начального давления и, наконец, сжимается при постоянном давлении до начального объема. Определить: 1) температуру газа для характерных точек цикла; 2) термический к.п.д. цикла.