- •Область определения функции. Необходимые сведения и примеры нахождения.
- •Основные элементарные функции, их свойства и графики.
- •Степенная функция.
- •Степенная функция с нечетным положительным показателем.
- •Степенная функция с нечетным отрицательным показателем.
- •Степенная функция с четным положительным показателем.
- •Степенная функция с четным отрицательным показателем.
- •Степенная функция с рациональным показателем.
- •Показательная функция.
- •Логарифмическая функция.
- •Тригонометрические функции, их свойства и графики.
- •Обратные тригонометрические функции, их свойства и графики.
- •Сложная функция
- •Понятие обратной функции
- •Классификация элементарных функций.
- •Определение предела последовательности
- •Бесконечно - малые последовательности
- •Свойства сходящихся последовательностей
- •Пределы функций. Примеры решений
- •1. Понять, что такое предел. 2. Научиться решать основные типы пределов.
- •1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.
- •2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.Д.
- •Первый замечательный предел
- •Второй замечательный предел
- •Определение непрерывности функции
- •Классификация точек разрыва функции
- •Арифметические действия над непрерывными функциями
- •Непрерывность функций на интервале
- •Непрерывность рациональных функций
- •Непрерывность тригонометрических функций
- •Непрерывность показательной функции
- •Производная, основные определения и понятия.
- •Касательные и нормали к кривым
- •Эту теорему легко обобщить на случай большего числа функций одного аргумента:
- •Производная
- •Дифференцируемость функций.
- •Непрерывность функции, имеющей производную. Теорема.
- •Производные различных порядков.
- •Дифференциалы различных порядков.
- •Дифференциал и его связь с производной
- •I Дифференциальное исчисление функции одной переменной Понятие производной
- •Геометрический смысл производной
- •Правила дифференцирования
- •Дифференцирование сложной и обратной функций
- •Производная степенно-показательной функции
- •Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- •Производные и дифференциалы высших порядков
- •Производная параметрически и неявно заданных функций
- •Основные теоремы дифференциального исчисления
- •Правило Лопиталя
- •Формула Тейлора
- •Выпуклость функции. Точки перегиба
- •Асимптоты графика функции
- •Общая схема исследования функций и построение их графиков
- •Экономический смысл производной
- •Максимизация прибыли
- •Оптимизация налогообложения предприятий
- •Интегральное исчисление функции одной переменной Неопределенный интеграл
- •Основные свойства неопределенного интеграла
- •Метод подстановки
Основные свойства неопределенного интеграла
dF(x) = F(x)+C. Справедливость этого равенства следует из очевидной цепочки равенств
dF(x) = F'(x)dx = f(x)dx = F(x)+C.
d f(x)dx = f(x)dx. Данная формула следует из равенства
d f(x)dx = d(F(x)+C) = dF(x) = F'(x)dx = f(x)dx.
Если функции f1(x), f2(x) имеют первообразные, то функция f1(x)+f2(x) тоже имеет первообразную, причем
(f1(x)+f2 (x))dx = f1(x)dx+ f2(x)dx.
Если функция f(x) имеет первообразную и k– постоянная, то и функция kf(x) также имеет первообразную, причем при k 0 справедливо равенство
kf(x)dx = k f(x)dx.
Заметим, что свойства 3 и 4 следуют из свойств производной.
Таблица интегралов
Ранее
была указана таблица производных от
основных элементарных функций (см. 1.6).
Приведем таблицу основных интегралов.
Справедливость ниже указанных формул
легко проверить дифференцированием.
Метод подстановки
Замена переменной интегрирования является одним из эффективных методов сведения интеграла к табличному. Этот прием интегрирования называется методом подстановки.
Теорема 15 (метод подстановки). Пусть функция x = (t) определена и дифференцируема на некотором множестве T, а X - множество значений этой функции, на котором определена f(x). Тогда, если функция f(x) имеет первообразную на X, то на T справедлива следующая формула
f(x)dx = f( (t))' (t)dt. |
(13) |
Доказательство. Пусть F(x) – первообразная для f(x) на X, то есть F' (x) = f(x). Используя правило дифференцирования сложной функции, получим
(F( (t)))' = F'x((t)) '(t) = f((t)) '(t).
Таким образом,
f( (t))'(t)dt=F((t))+C.
Так как f(x)dx = F(x)+C, то получим формулу (13).
