Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по Дискретке(1-81).docx
Скачиваний:
28
Добавлен:
01.03.2025
Размер:
6.11 Mб
Скачать

11)Равномощные множества. Теорема Кантора.

Два множества называются равномощными, если между ними существует биекция. Существование биекции между множествами есть отношение эквивалентности, а мощность множества — это соответствующий ему класс эквивалентности.

Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом, определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно-однозначным отображением (соответствием), одно-однозначным отображением.

Е сли между двумя множествами можно установить взаимно-однозначное соответствие (биекция), то такие множества называются равномощными. С точки зрения теории множеств, равномощные множества неразличимы.

В теории множеств теорема Кантора гласит, что

Любое множество менее мощно, чем множество всех его подмножеств.

Доказательство

Предположим, что существует множество , равномощное множеству всех своих подмножеств , то есть, что существует такая биекция , ставящая в соответствие каждому элементу множества некоторое подмножество множества .

Рассмотрим множество , состоящее из всех элементов , не принадлежащих своим образам при отображении (оно существует по аксиоме выделения): .

биективно, а , поэтому существует такой, что .

Теперь посмотрим, может ли принадлежать .

Если , то , а тогда, по определению , .

И наоборот, если , то , а следовательно, . В любом случае, получаем противоречие.

Следовательно, исходное предположение ложно и не равномощно .

Заметим, что содержит подмножество, равномощное (например, множество всех одноэлементных подмножеств ), а тогда из только что доказанного следует

12)Отношение порядка на совокупности мощностей

Отношение  на совокупности множеств есть отношение частичного порядка для мощностей множеств.

1) Рефлексивность .

2) Транзитивность .

Существуют подмножества B1B и C1C и  отображения такие, что f:A B1, g:BC1. Тогда g f -  соответствие между A и каким-то подмножеством C.

3) Антисимметричность  (без док-ва).

13) Критерий бесконечности множества Критерий бесконечности множества, предложенный Дедекиндом, формулируется следующим образом: «множество является бесконечным, тогда и только тогда, когда оно равномощно некоторой своей части»

13) Критерий бесконечности множества

Множество натуральных чисел, меньших или равных некоторому натуральному числу n, называется отрезком натурального ряда и обозначается через |1, n|.

Определение 1. Множество, равномощное отрезку натурального ряда, а также пустое множество, называется конечным. Множество, не являющееся конечным, называется бесконечным.

Иными словами, конечное множество (если оно не пусто) есть такое множество, элементы которого можно "пересчитать", т. е. перенумеровать так: a1, a2, ..., an, причем все элементы будут занумерованы, все числа от 1 до n будут использованы и различные элементы получат различные номера. Бесконечное же множество такое, элементы которого так "пересчитать" нельзя.