- •1)Множества. Включения и равенство множеств. Свойства.
- •2) Операция объединения и пересечения множест. Свойства.
- •3)Разность и симметричная разность. Свойства.
- •4) Пустое и универсальное множество
- •Дополнение множества Определение
- •Свойства
- •6)Бинарные соответствия между множествами и их виды. Отображения мно-в и их св-ва.
- •Виды отображений
- •7) Композиция соответсвий. Ассоциативность композиции. Ассоциативность композиции функций
- •8) Инверсия соответствия и её св-ва.
- •10)Отношения строгого и нестрогого порядка
- •11)Равномощные множества. Теорема Кантора.
- •Доказательство
- •12)Отношение порядка на совокупности мощностей
- •13) Критерий бесконечности множества
- •14) Счетные множества. Свойства счетных множеств
- •15) Несчетные множества. Существование несчетных множеств
- •16) Свойства континуальных множеств
- •17) Метод математической индукции.
- •18) Основное правило комбинаторики
- •19) Перестановки и их число
- •20) Размещения и их число
- •23) Бином Ньютона.
- •24) Перестановки с повторениями и их число
- •25) Сочетания с повторениями и их число
- •26) Метод рекуррентных соотношений
- •40) Полные графы. Группа автоморфизмов полного графа.
- •41) Части графа и операции над ними.
- •42) Подграф. Пересечение и объединение подграфов.
- •43) Двудольные графы. Регулярные графы.
- •44) Операции добавления вершины (ребра) к графу. Операции удаления вершины (ребра) графа.
- •45) Отождествление вершин графа. Стягивание ребра графа.
- •46) Дополнение графа. Свойства. Кольцевая сумма графов. Свойства.
- •47) Соединение (сумма) графов и его свойства.
- •48) Произведение графов. Свойства.
- •49) Композиция графов. Некоммутативность операции композиции графов.
- •50) Маршруты, цепи, циклы, простые цепи и циклы. Связность в графах. Сильно связные графы. Связные компоненты.
- •51) Расстояние в графах. Матрицы связности и достижимости.
- •52) Эксцентриситет вершин, диаметр и радиус графа. Центральные и периферийные вершины.
- •53) Взвешенные графы. Взвешенные эксцентриситет, радиус и диаметр. Взвешенные графы
- •53.Взвешеные графы . Взвешенный эксцентриситет ,радиус и диаметр.
- •54.Эйлеровы графы. Построение Эйлеровых циклов.
- •55.Покрытия графов.
- •56.Гамильтоновы графы.
- •57.Деревья. Концевые вершины. Критерий дерева.
- •58.Лес и его свойства.
- •59.Остов графа. Циклический и коцикличский ранги графа
- •60.Взвешенные графы. Алгоритм нахождения остова графа наименьшего веса.
- •61.Обходы графа по глубине и ширине. Фундаментальные циклы графов.
- •62. Матрица фундаментальных циклов графа.
- •64. Фундаментальное множество коциклов графа . Матрица фундаментальных коциклов графа и его свойства.
- •65. Раскраска графов по вершинам. Алгоритм раскраски графа.
- •66) Задача о четырёх красках
- •О доказательстве
- •67)Раскраска рёбер мультиграфа
- •68)Свойства бихроматического графа
- •71 Билет
11)Равномощные множества. Теорема Кантора.
Два множества называются равномощными, если между ними существует биекция. Существование биекции между множествами есть отношение эквивалентности, а мощность множества — это соответствующий ему класс эквивалентности.
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом, определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно-однозначным отображением (соответствием), одно-однозначным отображением.
Е
сли
между двумя множествами можно установить
взаимно-однозначное соответствие
(биекция), то такие множества называются
равномощными.
С точки зрения теории
множеств, равномощные множества
неразличимы.
В теории множеств теорема Кантора гласит, что
Любое множество менее мощно, чем множество всех его подмножеств.
Доказательство
Предположим,
что существует множество
,
равномощное множеству всех своих
подмножеств
,
то есть, что существует такая биекция
,
ставящая в соответствие каждому элементу
множества
некоторое
подмножество множества
.
Рассмотрим
множество
,
состоящее из всех элементов
,
не принадлежащих своим образам при
отображении
(оно
существует по аксиоме
выделения):
.
биективно,
а
,
поэтому существует
такой,
что
.
Теперь
посмотрим, может ли
принадлежать
.
Если
,
то
,
а тогда, по определению
,
.
И
наоборот, если
,
то
,
а следовательно,
.
В любом случае, получаем противоречие.
Следовательно, исходное предположение ложно и не равномощно .
Заметим,
что
содержит
подмножество, равномощное
(например,
множество всех одноэлементных подмножеств
),
а тогда из только что доказанного следует
12)Отношение порядка на совокупности мощностей
Отношение на совокупности множеств есть отношение частичного порядка для мощностей множеств.
1) Рефлексивность .
2) Транзитивность .
Существуют подмножества B1B и C1C и отображения такие, что f:A B1, g:BC1. Тогда g f - соответствие между A и каким-то подмножеством C.
3) Антисимметричность (без док-ва).
13) Критерий бесконечности множества Критерий бесконечности множества, предложенный Дедекиндом, формулируется следующим образом: «множество является бесконечным, тогда и только тогда, когда оно равномощно некоторой своей части»
13) Критерий бесконечности множества
Множество натуральных чисел, меньших или равных некоторому натуральному числу n, называется отрезком натурального ряда и обозначается через |1, n|.
Определение 1. Множество, равномощное отрезку натурального ряда, а также пустое множество, называется конечным. Множество, не являющееся конечным, называется бесконечным.
Иными словами, конечное множество (если оно не пусто) есть такое множество, элементы которого можно "пересчитать", т. е. перенумеровать так: a1, a2, ..., an, причем все элементы будут занумерованы, все числа от 1 до n будут использованы и различные элементы получат различные номера. Бесконечное же множество такое, элементы которого так "пересчитать" нельзя.
