
- •13.Фиктивные переменные.
- •14.Гетероскедастичность.
- •15.Обобщенный метод наименьших квадратов.
- •16.Временные ряды.
- •17.Вычисление сезонной компоненты.
- •18.Вычисление тренда.
- •19.Выделение сезонной компоненты и тренда с помощью фиктивных переменных.
- •20.Автокорреляция в остатках. Модель Дарбина – Уотсона
- •21.Системы эконометрических уравнений.
- •22.Косвенный метод наименьших квадратов.
- •23.Двухшаговый метод наименьших квадратов.
21.Системы эконометрических уравнений.
У1=а11х1+а12х2+….+a1nxn+E1
У2=а21х1+а22х2+….+a2nxn+E2
-------------------------------------------------------
Уn=аn1х1+аn2х2+….+anxn+En
Основным методом решения систем экономич. Уравнений является метод наименьших квадратов.(МНК)
Более сложным случаем системы экономических уравнений является случай, когда каждая предыдущая зависимая переменная «у»становится фактором «х» в другом уравнении
Сложные экономические процессы описывают с помощью системы взаимосвязанных уравнений. Различают несколько видов систем уравнений:
1. Система независимых уравнений - когда каждая зависимая переменная у рассматривается как функция одного и того же набора факторов х:
y1=a11*x1+a12*x2+…+a1m*xm+e1
Для
решения этой системы и нахождения ее
параметров
yn=an1*x1+an2*x2+…+anm*xm+en используется МНК.
2.Система рекурсивных уравнений – когда зависимая переменная у одного уравнения выступает в виде фактора х в другом уравнении:
y
1=a11*x1+a12*x2+…+a1m*xm+e1
y2=b21*y1+a21*x1+a22*x2+…+a2m*xm+e2
y3=b31*y1+b32*y2+a31*x1+a32*x2+…+a3m*xm+e3
yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en
Для решения этой системы и нахождения ее параметров используется МНК.
3 Система взаимосвязанных уравнений – когда одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других – в правую.
y
1=b12*y2+b13*y3+…+b1n*yn+a11*x1+a12*x2+…+a1m*xm+e1
y2=b21*y1+b23*y3+…+b2n*yn+a21*x1+a22*x2+…+a2m*xm+e2
yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en
22.Косвенный метод наименьших квадратов.
В системе одновременных уравнений каждое уравнение не может рассматриваться как самостоятельная часть системы, поэтому оценки неизвестных коэффициентов данных уравнений нельзя определить с помощью классического метода наименьших квадратов, т. к. нарушаются три основных условия применения этого метода:
а) между переменными системы уравнений существует одновременная зависимость, т. е. в первом уравнении системы y1 является функцией от y2, а во втором уравнении уже y2 является функцией от y1;
б) наличие проблема мультиколлинеарности, т.е. во втором уравнении системы y2 зависит от x1, а в других уравнениях обе переменные являются факторными;
в) случайные ошибки уравнения коррелируют с результативными переменными.
Следовательно, если неизвестные коэффициенты системы одновременных уравнений оценивать с помощью классического метода наименьших квадратов, то в результате мы получим смещённые и несостоятельные оценки.
Косвенный метод наименьших квадратов используется для получения оценок неизвестных коэффициентов системы одновременных уравнений, удовлетворяющих свойствам эффективности, несмещённости и состоятельности.
Косвенный метод наименьших квадратов применяется только в том случае, если структурная форма системы одновременных уравнений является точно идентифицированной.
Алгоритм метода наименьших квадратов реализуется в три этапа:
на основе структурной формы системы одновременных уравнений составляется её приведённая форма, все параметры которой выражены через структурные коэффициенты;
приведённые коэффициенты каждого уравнения оцениваются обычным методом наименьших квадратов;
на основе оценок приведённых коэффициентов системы одновременных уравнений определяются оценки структурных коэффициентов через приведённые уравнения.
Рассмотрим применение косвенного метода наименьших квадратов на примере структурной формы модели спроса и предложения:
Было доказано, что структурная форма модели спроса и предложения является точно идентифицированной, поэтому для определения оценок неизвестных параметров данной модели можно применить косвенный метод наименьших квадратов.
1) запишем приведённую форму модели спроса и предложения:
2) определим оценки коэффициентов приведённой формы модели спроса и предложения с помощью обычного метода наименьших квадратов. Тогда система нормальных уравнений для определения коэффициентов первого уравнения приведённой формы модели будет иметь вид:
Система нормальных уравнений для определения коэффициентов второго уравнения приведённой формы модели записывается аналогично. Решением данных систем нормальных уравнений будут численные оценки приведённых коэффициентов A1,A2,A3 и B1,B2,B3;
Для определения по оценкам приведённых коэффициентов получить оценки структурных коэффициентов первого уравнения, необходимо из второго приведённого уравнения выразить переменную It и подставить полученное выражение в первое уравнение приведённой формы модели. Для определения оценок структурных коэффициентов второго уравнения, необходимо из второго приведённого уравнения выразить переменную Pt–1 и подставить полученное выражение в первое уравнение приведённой формы модели.