Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты химия.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
241.24 Кб
Скачать

Классификация комплексных соединений

Существует несколько классификаций комплексных соединений, в основу которых положены различные принципы.

По заряду комплекса

1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.).

[(Zn(NH3)4)]Cl2 — хлорид тетраамминцинка(II) [Co(NH3)6]Cl2 — хлорид гексаамминкобальта(II)

2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.

K2[BeF4] — тетрафторобериллат(II) калия Li[AlH4] — тетрагидридоалюминат(III) лития K3[Fe(CN)6] — гексацианоферрат(III) калия

3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.

[Ni(CO)4] — тетракарбонилникель [Pt(NH3)2Cl2] — дихлородиамминплатина(II)

По числу мест, занимаемых лигандами в координационной сфере

1) Монодентатные лиганды. Такие лиганды бывают нейтральными (молекулы Н2О, NH3, CO, NO и др.) и заряженными (ионы CN, F, Cl, OH, SCN, S2O32− и др.).

2) Бидентатные лиганды. Примерами служат лиганды: ион аминоуксусной кислоты H2N — CH2 — COO, оксалатный ион O — CO — CO — O, карбонат-ион СО32−, сульфат-ион SO42−.

3) Полидентатные лиганды. Например, комплексоны — органические лиганды, содержащие в своём составе несколько групп−С≡N или −COOH (этилендиаминтетрауксусная кислота — ЭДТА). Циклические комплексы, образуемые некоторыми полидентатными лигандами, относят к хелатным (гемоглобин и др.).

По природе лиганда

1) Аммиакаты — комплексы, в которых лигандами служат молекулы аммиака, например: [Cu(NH3)4]SO4, [Co(NH3)6]Cl3, [Pt(NH3)6]Cl4 и др.

2) Аквакомплексы — в которых лигандом выступает вода: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3 и др.

3) Карбонилы — комплексные соединения, в которых лигандами являются молекулы оксида углерода(II): [Fe(CO)5], [Ni(CO)4].

4) Ацидокомплексы — комплексы, в которых лигандами являются кислотные остатки. К ним относятся комплексные соли: K2[PtCl4], комплексные кислоты: H2[CoCl4], H2[SiF6].

5) Гидроксокомплексы — комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: Na2[Zn(OH)4], Na2[Sn(OH)6] и др.

20) Координационная теория Вернера

Теория координационных соединений, предложенная А. Вернером в 1893 году, до сих пор является основной теорией координационных соединений (для комплексов определенного вида). Рассмотрим ее основные положения.

1. Большинство элементов проявляет два типа валентности – главную и побочную.

2. Атом элемента стремится насытить не только главные, но и побочные валентности.

3. Побочные валентности атома строго фиксированы в пространстве и определяют геометрию комплекса и его различные свойства.

В современной химии синонимом главной валентности является степень окисления элемента, а побочная валентность определяется как координационное число, то есть количество атомов непосредственно связанных с металлом при насыщении его побочной валентности.

21) Свойства комплексных соединений

Свойства комплексных соединений определяются их составом и строением. В воде они диссоциируют на внешнюю сферу и комплексный ион:

K3[Fe(CN)6  3K+ + [Fe(CN)6]–3.

Важнейшим свойством комплексов в растворах является их устойчивость. Количественно она характеризуется константой устойчивости. Внутренняя сфера комплекса в незначительной степени подвергается электролитической диссоциации, распадаясь на комплексообразователь и лиганды, например:

[Fe(CN)6]3–   Fe3+ + 6CN.

Отношение концентрации недиссоциированного комплекса к произведению концентраций комплексообразователя и лигандов называется константой устойчивости, а обратная ей величина – константой нестойкости:

Чем больше константа устойчивости и чем меньше константа нестойкости, тем прочнее комплекс.

Комплексные соли могут вступать в реакции обмена и в реакции замещения, например:

2CuSO4 + K4[Fe(CN)6] = Cu2[Fe(CN)6]  + 2K2SO4,

Zn + 2Na[Au(CN)2] = Na2[Zn(CN)4] + 2Au,

а также в окислительно-восстановительные реакции:

Таким образом, комплексные соли в растворах ведут себя так же, как и соли простые.

22) Закон действия масс

Закон действующих масс - скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.

Для одностадийной гомогенной реакции типа А+В ® продукты реакции этот закон выражается уравнением:

v = k*cA*cB,

где v - скорость реакции; cA и cB - концентрации веществ А и В, моль/л; k - коэффициент пропорциональности, называемый константой скорости реакции.

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1 моль/л или их произведение равно единице. Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.

23) Закон Гесса, следствие из закона Гесса

Закон Гесса: Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:

Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.

Следствия из закона Гесса:

  • Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции

  • Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):

  • Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):

Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту. Табличные величины теплот образования и сгорания веществ обычно относятся к т. н. стандартным условиям. Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры.

  • Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.

24) Скорость гомогенных химических реакций

Скорость химической реакции – это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).

Гомогенной называется реакция, протекающая в однородной среде (в одной фазе). Гетерогенные реакции протекают на границе раздела фаз, например твердой и жидкой, твердой и газообразной. Отношение количества вещества к единице объема называется концентрацией с, моль/л.

Различают среднюю и мгновенную скорости реакции. Средняя скорость реакции равна:

,

где с2и с1 – концентрации исходного вещества в момент времени t2 и t1.

Знак минус означает, что концентрация исходного вещества уменьшается. В ходе реакции изменяются концентрации реагирующих веществ и соответственно скорость реакции. Скорость реакции в данный момент времени или, мгновенная (истинная) скорость реакции, равна:

Скорость реакции принимается всегда положительной, поэтому производная исходных концентраций берется со знаком минус, а продуктов реакции – со знаком плюс.

Скорость реакции имеет единицу измерения [моль м-3 с-1], [моль л-1с-1].

Скорость реакции зависит от природы реагирующих веществ. Некоторые реакции протекают со взрывом, другие могут идти годами. На скорость реакции влияют такие факторы как концентрация веществ, температура, катализаторы.

25) Скорость гетерогенных химических реакций

Гетерогенные реакции имеют большое значение в технике: это горение твердого и жидкого топлива, коррозия металлов и сплавов. В этом случае реакция идет на поверхности раздела фаз, которая служит реакционным пространством гетерогенной химической реакции. Концентрацию газообразных и жидких веществ в реакции измеряют количеством молей приходящихся на единицу реакционной поверхности (моль/м2, моль/см2) и называют поверхностной концентрацией – сs.

,

.

Зависимость скорости гетерогенной химической реакции от поверхностной концентрации веществ в реакции определяется законом действующих масс. Так, реакция горения угля протекает тем быстрее, чем интенсивнее подается к углю кислород. В случае гетерогенных реакций в уравнение закона действующих масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, обычно представляет собой постоянную величину и поэтому входит в константу скорости. Например, для гетерогенной реакции горения угля

С(к) + О2(г) = СО2(г)

кинетическое выражение уравнения скорости реакции по закону действующих масс запишется так

,

где ;

      k – Константа скорости реакции;

      сs2) –поверхностная концентрация кислорода, моль/м2 .

В некоторых случаях из-за трудностей измерения поверхностной концентрации используют объемную концентрацию (моль/л). Например, скорость реакции Si(к) + О2(г) = SiО2(к) рассчитывают по уравнению

,

где v – скорость реакции, моль/(л с);

k – константа скорости, 1/с;

с2) – концентрация О2 в газообразной фазе над реакционной поверхностью, моль/л.

Измерение скорости гетерогенных реакций в моль/(л с) приводит к тому, что скорость становится функцией площади реакционной поверхности, так как чем больше эта площадь, тем больше число столкновений молекул реагирующих веществ, находящихся в разных фазах гетерогенной системы. Число столкновений на единице поверхности раздела фаз постоянно и применительно к гетерогенным процессам по закону действующих масс скорость не зависит от площади поверхности раздела фаз, так же как скорость гомогенной реакции не зависит от объема системы.

26) Факторы, влияющие на скорость химических реакций

Для гомогенных, гетерогенных реакций:

1) концентрация реагирующих веществ;

2) температура;

3) катализатор;

4) ингибитор.

Только для гетерогенных:

1) скорость подвода реагирующих веществ к поверхности раздела фаз;

2) площадь поверхности.

Главный фактор – природа реагирующих веществ – характер связи между атомами в молекулах реагентов.

27) Влияние температуры на скорость реакции

Влияние температуры на скорость реакций определяется правилом Вант-Гоффа:

В интервале температур от 0оС до 100оС при повышении температуры на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза:

где  - t температурный коэффициент, принимающий значения от 2 до 4.

Объяснение зависимости скорости реакции от температуры было дано С.Аррениусом. К реакции приводит не каждое столкновение молекул реагентов, а только наиболее сильные столкновения. Лишь молекулы, обладающие избытком кинетической энергии, способны к химической реакции.

28) Обратимые процессы. Химическое равновесие

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Равновесие химическое, состояние системы, в которой обратимо протекает одна или несколько реакций химических, причём для каждой из них скорости прямой и обратной реакций равны, вследствие чего состав системы остаётся постоянным, пока сохраняются условия её существования. В простейшем случае, когда система гомогенна и в ней протекает обратимая химическая реакция

А + В⇔С + D,

скорость прямой реакции пропорциональна концентрациям реагирующих веществ

u1 = k1[A][B],

а скорость обратной реакции пропорциональна концентрациям продуктов реакции

u2= k2[C][D],

где k1 и k2 — соответствующие константы скоростей при данных условиях.

29) Принцип Ле-Шателье

Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Влияние концентрации на состояние равновесия подчиняется следующим правилам:

При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;

При повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

Давление существенно влияет на положение равновесия в реакциях с участием газообразных веществ, сопровождающихся изменением объёма за счёт изменения количества вещества при переходе от исходных веществ к продуктам:

При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот.

В реакции синтеза аммиака количество газов уменьшается вдвое: N2 + 3H2 ↔ 2NH3

Значит, при повышении давления равновесие смещается в сторону образования NH3, о чём свидетельствуют следующие данные для реакции синтеза аммиака при 400 °C.

Влияние температуры зависит от знака теплового эффекта реакции. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры — в направлении экзотермической реакции. В общем же случае при изменении температуры химическое равновесие смещается в сторону процесса, знак изменения энтропии в котором совпадает со знаком изменения температуры.

30) Гомогенный катализ

Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты. Рассмотрим некоторую реакцию

А  +  В  ––>  С

В присутствии катализатора осуществляются две быстро протекающие стадии, в результате которых образуются частицы промежуточного соединения АК и затем (через активированный комплекс АВК#) конечный продукт реакции с регенерацией катализатора:

А  + К   ––>   АК

АК  +  В   ––>   С + К

Примером такого процесса может служить реакция разложения ацетальдегида, энергия активации которой EA = 190 кДж/моль:

СН3СНО  ––>   СН4 + СО

В присутствии паров йода этот процесс протекает в две стадии:

СН3СНО + I2   ––>   СН3I + НI + СО

СН3I + НI  ––>   СН4 + I2

Уменьшение энергии активации этой реакции в присутствии катализатора составляет 54 кДж/моль; константа скорости реакции при этом увеличивается приблизительно в 105 раз. Наиболее распространенным типом гомогенного катализа является кислотный катализ, при котором в роли катализатора выступают ионы водорода Н+.

31) Гетерогенный катализ

Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:

1.  Диффузия исходных веществ к поверхности катализатора.

2.  Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:

А + В + К   ––>   АВК

3.  Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):

АВК   ––>   АВК#

4.  Распад активированного комплекса с образованием адсорбированных продуктов реакции:

АВК#   ––>   СDК

5.  Десорбция продуктов реакции с поверхности катализатора.

СDК   ––>   С + D + К

6.  Диффузия продуктов реакции от поверхности катализатора.

Специфической особенностью гетерокаталитических процессов является способность катализатора к промотированию и отравлению. 

Промотирование – увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов). Например, для катализируемой металлическим никелем реакции

СО + Н2  ––>   СН4 + Н2О

введение в никелевый катализатор небольшой примеси церия приводит к резкому возрастанию активности катализатора.

Отравление – резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов). Например, для реакции синтеза аммиака (катализатор – губчатое железо), присутствие в реакционной смеси соединений кислорода или серы вызывает резкое снижение активности железного катализатора; в то же время способность катализатора адсорбировать исходные вещества снижается очень незначительно.

Для объяснения этих особенностей гетерогенно-каталитических процессов Г. Тэйлором было высказано следующее предположение: каталитически активной является не вся поверхность катализатора, а лишь некоторые её участки – т.н. активные центры, которыми могут являться различные дефекты кристаллической структуры катализатора (например, выступы либо впадины на поверхности катализатора). В настоящее время нет единой теории гетерогенного катализа. Для металлических катализаторов была разработана теория мультиплетов. Основные положения мультиплетной теории состоят в следующем:

1. Активный центр катализатора представляет собой совокупность определенного числа адсорбционных центров, расположенных на поверхности катализатора в геометрическом соответствии со строением молекулы, претерпевающей превращение.

2. При адсорбции реагирующих молекул на активном центре образуется мультиплетный комплекс, в результате чего происходит перераспределение связей, приводящее к образованию продуктов реакции.

Теорию мультиплетов называют иногда теорией геометрического подобия активного центра и реагирующих молекул. Для различных реакций число адсорбционных центров (каждый из которых отождествляется с атомом металла) в активном центре различно – 2, 3, 4 и т.д. Подобные активные центры называются соответственно дублет, триплет, квадруплет и т.д. (в общем случае мультиплет, чему и обязана теория своим названием).

32)Растворы неэлектролитов

РАСТВОРЫ НЕЭЛЕКТРОЛИТОВ, бинарные или многокомпонентные мол. системы, состав которых может изменяться непрерывным образом. В отличие от растворов электролитов, в растворах неэлектролитов заряженные частицы в сколько-нибудь заметных концентрациях отсутствуют. Растворы неэлектролитов могут быть твердыми, жидкими и газообразными. В данной статье рассматриваются жидкие растворы.

Растворы неэлектролитов служат средой, в которой протекают многие прир. и пром. процессы. Изучение и прогнозирование св-в этих систем тесно связаны с такими практич. проблемами, как подбор р-рителей для реализации технол. процессов, получение систем с заданными свойствами, разделение прир. и пром. смесей (включая газы и нефти), глубокая очистка в-в.

33) Закон Рауля

Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.

Для бинарного раствора, состоящего из компонентов А и В (компонент А считаем растворителем) удобнее использовать другую формулировку:

Относительное понижение парциального давления пара растворителя над раствором не зависит от природы растворённого вещества и равно его мольной доле в растворе.

Растворы, для которых выполняется закон Рауля, называются идеальными. Идеальными при любых концентрациях являются растворы, компоненты которых очень близки по физическим и химическим свойствам, и образование которых не сопровождается изменением объёма и выделением либо поглощением теплоты. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором.

34) Закон Вант-Гоффа. Осмос

Осмосом называют процесс односторонней диффузии растворителя через полупроницаемую от раствора с меньшей концентрацией растворенного вещества к раствору с большей концентрацией.

Другими словами, если сосуд разделить на две части перегородкой, которая пропускает молекулы растворителя и не пропускает молекулы растворенного вещества, а затем в одно отделение налить чистый растворитель, а в другое раствор, то оказывается, чо растворитель будет диффундировать из первого отделения во второй.

Осмос можно объяснить тем, что концентрация молекул воды в единице объема в одном сосуде больше, чем в другом, или тем, что молекулы воды в растворе частично связываются молекулами сахара, гидратируя их.

Правило Вант-Гоффа — эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило:

При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза.

Уравнение, которое описывает это правило следующее:

,

где   — скорость реакции при температуре   — скорость реакции при температуре   — температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

35) Закон Генри

Закон Генри — закон, по которому при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором. Закон пригоден лишь для идеальных растворов и невысоких давлений.

Закон описан английским химиком У. Генри в 1803 г.

Закон Генри записывается обычно следующим образом:

где:

 — парциальное давление газа над раствором,

 — молярная концентрация газа в растворе,

 — коэффициент Генри.

36) Замерзание и кипение растворов.

Индивидуальные вещества характеризуются строго определенными температурами переходов из одного агрегатного состояния в другое (температура кипения, температура плавления или кристаллизации).

Иначе обстоит дело с растворами. Присутствие растворенного вещества повышает температуру кипения и понижает температуру замерзания растворителя, и тем сильнее, чем концентрированнее раствор. В большинстве случаев из раствора кристаллизуется (при замерзании) или выкипает (при кипении) только растворитель вследствие чего концентрация раствора в ходе его замерзания или кипения возрастает. Это, в свою очередь, приводит к еще большему повышению температуры кипения и снижению температуры замерзания. Таким образом, раствор кристаллизуется и кипит не при определенной температуре, а в некотором температурном интервале. Температуру начала кристаллизации и начала кипения данного раствора называют его температурой кристаллизации и температурой кипения.

Разность между температурами кипения раствора и чистого растворителя называют повышением температуры кипения раствора. Разность между температурами замерзания чистого растворителя и раствора называют понижением температуры замерзания раствора.

Всякая жидкость начинает кипеть при той температуре, при которой давление ее насыщенного пара достигает величины внешнего давления.

Температура кипения раствора всегда выше температуры кипения чистого растворителя. Аналогично объясняется и понижение температуры замерзания растворов.

37) Теория электрической диссоциации

Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na+, Mg2+, Аl3+ и т.д.) -или из нескольких атомов - это сложные ионы (NО3-, SO2-4, РОЗ-4и т.д.).

2.  Под действием  электрического  тока ионы  приобретают  направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссо­циации молекулы электролита КA на катион К+ и анион А- в общем виде записывается так:

КА   K+ + A-

Теория электролитической диссоциации является одной из основ­ных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

38) Растворы электролитов. Сильные и слабые электролиты

Электролиты – вещества, которые при растворении подвергаются диссоциации на ионы. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда.

Необходимым условием, определяющим возможность процесса электролитической диссоциации, является наличие в растворяемом веществе ионных или полярных связей, а также достаточная полярность самого растворителя.

Электролиты можно разделить на две большие группы: сильные и слабые. Сильные электролиты диссоциируют практически полностью. К сильным электролитам относятся, например, H2SO4, HCl, HNO3, H3PO4, HClO3, HClO4, KOH, а также хорошо растворимые соли: NaCl, KBr, NH4NO3 и др. Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами. К слабым электролитам относятся плохо растворимые соли, вода и большинство органических кислот (например, уксусная CH3COOH, муравьиная HCOOH), а также неорганические соединения: H2CO3, H2S, HCN, H2SiO3, H2SO3, HNO2, HClO,HCNO, NH4OH и др.

39) Водородный показатель

Водородный показатель, pH — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:

В воде концентрация ионов водорода определяется электролитической диссоциацией воды по уравнению H2O=H++OH-

Константа диссоциации при 22° С составляет Пренебрегая незначительной долей распавшихся молекул, можно концентрацию недиссоциированной части воды принять равной обшей концентрации воды, которая составляет: С[H2O]=1000/18=55,55моль/л. Тогда: 

C[ H+ ] ·C[ OH- ]=K·C[H2O]=1,8·10-16·55,55=10-14

Понятия кислая, нейтральная и щелочная среда приобретают количественный смысл. В случае, если [ H+ ] =[ OH- ]эти  концентрации (каждая из них) равны  моль/л, т.е [ H+ ] =[ OH- ]=10-7моль/л и среда нейтральная, в этих растворах pH=-lg[ H+ ]=7 и  рОН=-lg[ OH-]=7 Если [ H+ ]>10-7моль/л, [ OH-]<10-7моль/л -среда кислая; рН<7. Если [ H+ ]<10-7 моль/л, [ OH-]>10-7моль/л  -среда щелочная; рН>7. В любом водном растворе рН + рОН =14, где рОН=-lg[ OH-]  Величина рН имеет большое значение для биохимических процес­сов, для различных производственных процессов, при изучении свойств природных вод и возможности их применения и т.д.

40) Гидролиз солей

Гидролиз солей- взаимодейтсвие солей с водой, приводящее к присоединению протона Н+ молекулы воды к аниону кислотного остатка или гидроксогруппы ОН- к катиону металла.Гидролизу подвергаются соли, образованные катионами, соответствующими слабым основаниям, или анионами, соответствующими слабым кислотам.

Соль образована слабым основанием и сильной кислотой

Соль образована сильным основанием и слабой кислотойкислотой

CuCl2=Cu2++2Cl- H2O H++OH- Cu2++H2O CuOH++H+ Образуется слабодиссоциируемый катион CuOH+. Среда в растворе кислая.

CuCl2+H2O CuOHCl+HCl

 

Na2CO3=2Na++CO32- H2O H++OH- CO32-+H2O HCO3-+OH- Образуется слабодиссоциируемый анион HCO3-. Среда- щелочная.

Na2CO3+H2O NaHCO3+NaOH

 

Соль образована слабой кислотой и слабым основанием

(NH4)S=2NH4++S2- NH4++H2O NH3· H2O+H+ S2-+H2O HS-+OH- Образуется слабодиссоциированный анион HS- и растворенный в воде аммиак.

Al2S3+6H2O=2Al(OH)3 +3H2S Данная реакция гидролиза необратима, т.к. образуется осадок Al(OH)3 и выделяется сероводород H2S

Гидролиз усиливается

а) при нагревании раствора ( гидролиз обычно эндотермический процесс ) б) при разбавлении раствора водой

44) Общие свойства металлов. Стандартный электродный потенциал