Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Моделирование.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
519.17 Кб
Скачать

16. Классификация моделей

Физ. – воспроизведение постоянства определяющих критериев подобия.

Физ. моделью некоторой системы наз-ют систему той же или иной природы, которая частично или полностью воспроизводить свойства исходной системы в рамках заданного приближения.

Чаще всего в качестве модели исп-ся электрич. или электромагн. процессы. При этом исходные моделируемые процессы могут иметь разнообр. физ природу (мех., тепловую)

Разновидностью физ. моделирования является исследование процесса той же физ. природы, но в другой области параметров (масштабные модели).

Физ. моделир-е иногда является альтернативой мат. моделированию, но часто они дополняют друг друга.

Мат. моделирование – качественное или количественное описание процесса с помощью мат. модели, при построении которой реальный процесс описывается с помощью того или иного мат. аппарата.

Мат. модель сложного процесса, непосредственное проведение экспериментов на котором часто практически невозможно, позволяет исследовать его динамику, давая количественное описание процесса и устанавливает изменение количественного характера в динамике.

Моделир. процессы разнообразные по своей природе и степени сложности. Все они делятся на детерминированные и стохастические.

Детерминир-е – процессы, динамика которых полностью определяется начальными условиями и динамич. переменные являются функциями времени.

Стохастические – процессы, параметры которых изменяются случайно под воздействием неконтролуируемых дестабилизирующих объектов. Поэтому однозначно предсказать поведение таких процессов на основе их изучения затруднительно. Поэтому, говорят лишь о их вероятности того или иного поведения.

Мат. моделирование позволяет установить условия, при которых динамическая система переходит от детерминированного процесса к стохастическому. В соответствии с характером изучаемого процесса, строятся жесткие или вероятностные модели.

Жесткие модели строятся без использования стахостич. вероятностных распределений. В этом случае определенному значению входного параметра будет соотв-ть опред. значение его выходного параметра. Связь между вх. и вых. параметрами явл-ся функциональной.

Вероятностные модели описывают стох. процессы. Большинство совр. процессов носят случ. характер, когда вых. параметр связан с входным параметром статистически. В этом случае каждому определенному значению вх. параметра соотв. распределение значение вых. параметра. Поэтому вероятностные модели строятся с использованием методов теории вер-тей и мат. статистики.

17.Корреляционный анализ.Коэффициент корреляции. Корреляционное отношение

Для построения матем. модели, отображаемой зависимость ф-ции оклика от фактора X

Y=f(x)

Стат.данные обрабатывают, подсчитывая среднее значение отклика Y для каждого определенного значения X

По виду графического изображения судят о наличии влияния одного параметра на другой.Если оно обнаружено, то говорят о наличии корреляционной связи между рассм. параметрами.

уравнения регрессии

Цель корреляционного анализа – установление корреляционной связи между рассматриваемыми параметрами.

Варианты:

  1. X и Y связаны – зависимости обоими признаками могут выражаться в виде формулы.

  2. X и Y не строго связаны – связь носит статический или вероятностный характер.

  3. X и Y не связаны – связи нет.

Коэффициент корреляции:

Если , то функциональная связь прямая.

Если , то

При оценке коэффициента корреляции учитывается число пар наблюдений , при которых было произведении их вычисление.

- Критерий Стьюдента

Если , коэффициент правильный.

В случае криволинейной связи между признаками оценка связи между ними осуществляется с помощью корреляционного отношения.

n – число наблюдений

N – общее число наблюдений

- среднее арифметическое

- общее арифметическое

σ – дисперсия

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]