
- •Глава 13 Интерфейсная часть пк
- •13.1 Интерфейсы
- •13.2 Классификация интерфейсов
- •13.3 Шины расширений
- •13.4 Локальные шины
- •13.5 Периферийные шины
- •13.6 Универсальные последовательные интерфейсы
- •13.7 Прикладные программные интерфейсы
- •13.8 Беспроводные интерфейсы
- •13.9 Прочие интерфейсы
- •8 Дополнительные интегральные микросхемы
- •9 Элементы конструкции пк
- •10 Функциональные характеристики эвм
- •Глава 10 Системы команд и соответствующие классы процессоров
- •10.1 Классы команд
- •10.2 Классы процессоров
- •Глава 12 Системные платы и чипсеты
- •12.1 Разновидности системных плат
- •12.2 Чипсеты системных плат
- •14.6 Логическая структура основной памяти
- •Глава 17 Информационно-вычислительные системы
- •17.1 Классификация информационно-вычислительных систем
- •17.2 Функциональная и структурная организация информационно-вычислительных систем
- •Глава 14 Запоминающие устройства пк
- •14.1 Статическая и динамическая оперативная память
- •14.3 Физическая структура основной памяти
- •14.4 Оперативные запоминающие устройства
- •14.5 Постоянные запоминающие устройства
- •14.6 Логическая структура основной памяти
- •Глава 15 Внешние запоминающие устройства
- •15.1 Файлы, их виды и организация
- •15.2 Атрибуты файлов
- •15.3 Накопители на жестких магнитных дисках
- •15.4 Накопители на гибких магнитных дисках
- •15.5 Накопители на оптических дисках
- •15.6 Накопители на магнитооптических дисках
- •15.7 Накопители на магнитной ленте
- •15.8 Устройства флэш-памяти
- •Часть 1 создание и эволюция эвм
- •Глава 1 Научные предпосылки создания эвм
- •1.1 Управление и информация
- •1.2 Информация и ее особенности
- •Глава 2 Технические предпосылки и практические потребности создания эвм
- •2.1 Механические счетные машины
- •2.2 Электромеханические счетные машины
- •2.3 Электронные вычислительные машины
- •Глава 3 Эволюция эвм
- •3.1 Первое поколение эвм: 1950-1960 годы
- •3.2 Второе поколение эвм: 1960-1970 годы
- •3.3 Третье поколение эвм: 1970-1980 годы
- •3.4 Четвертое поколение эвм: 1980-1990 годы
- •3.5 Пятое поколение эвм: 1990 год – настоящее время
- •3.6 Шестое и последующие поколения эвм
- •Глава 4 Основные классы современных эвм
- •4.1 Большие компьютеры
- •4.2 Малые компьютеры
- •4.3 Микрокомпьютеры
- •4.4 Суперкомпьютеры
15.7 Накопители на магнитной ленте
Накопители на магнитной ленте были первыми ВЗУ вычислительных машин.
В универсальных компьютерах широко использовались и используются накопители на бобинной магнитной ленте (НМЛ), а в персональных компьютерах – накопители на кассетной магнитной ленте (НКМЛ). Кассеты с магнитной лентой (картриджи) весьма разнообразны: они отличаются как шириной применяемой магнитной ленты, так и конструкцией.
Лентопротяжные механизмы для кассет носят название стримеров – это инерционные механизмы, требующие после каждой остановки ленты ее небольшой перемотки назад (перепозиционирования). Скорость считывания информации с магнитной ленты в стримерах также не высока и обычно составляет от 100 до 500 Кбайт/с.
15.8 Устройства флэш-памяти
Флэш-диски (Flash Disks) – весьма популярный и очень перспективный класс энергонезависимых запоминающих устройств. Флэш-диски (твердотельные диски) представляют собой устройства для долговременного хранения информации с возможностью многократной перезаписи. Стирание и запись данных осуществляется так же, как у HDD, – блоками (иногда называемыми по аналогии с магнитными дисками секторами, но более правильно было бы их именовать кластерами).
У флэш-дисков отсутствуют какие либо подвижные части, дай форма у них совсем не круглая – чаще всего они представляют собой прямоугольные картриджи.
Для хранения информации в них используются микросхемы памяти с металлизацией (металл-нитридные), выполненные по технологии Flash.
Стирание содержимого всего блока выполняется одномоментно отдельным сигналом (отсюда, вероятно, и название памяти flash – вспышка); тотальное стирание было специально организовано разработчиками, поскольку первоначально флэш-память применялась в военных приборах, и при обнаружении попыток несанкционированного доступа к ним необходимо было сразу уничтожать все данные – система автоматически генерировала внутренний сигнал стирания.
По существу, флэш-диски – это «полупостоянные» запоминающие устройства, стирание, считывание и запись информации в которых выполняется электрическими сигналами (в отличие от прочих ПЗУ, в которых эти действия производятся лучом лазера или чисто механически – «перепрошивкой»).
Часть 1 создание и эволюция эвм
Глава 1 Научные предпосылки создания эвм
1.1 Управление и информация
Важнейшую и решающую роль в создании и эволюции ЭВМ сыграла наука «Кибернетика».
Кибернетика – наука об общих закономерностях процессов управления в системах любой природы. Предметом изучения кибернетики являются информационные процессы, описывающие поведение этих систем.
Цель изучения – создание принципов, методов и технических средств для наиболее эффективных в том или ином смысле результатов управления в таких системах.
Основные особенности кибернетики как самостоятельной научной области состоят в следующем:
Кибернетика способствовала тому, что классическое представление о мире, состоящем из материи и энергии, уступило место представлению о мире, состоящем из трех составляющих: материи, энергии и информации, ибо без информации немыслимы организованные системы.
Кибернетика рассматривает управляемые системы не в статике, а в динамике, то есть в их движении, развитии, при этом в тесной связи с другими (внешними) системами. Это позволяет вскрывать закономерности и устанавливать факты, которые иначе оказались бы не выявленными.
Как бы детально и строго ни старались изучать поведение сложной системы, никогда нельзя учесть полное множество всех факторов, прямо или косвенно влияющих на ее поведение. Поэтому всегда следует вводить различные ограничения, считаться с неизбежностью наличия некоторых случайных факторов, являющихся результатом действия этих неучтенных процессов, явлений и связей.
В кибернетике часто применяется метод исследования систем с использованием «черного ящика».
Под «черным ящиком» понимается система, в которой исследователю доступна лишь входная и выходная информация этой системы, а внутреннее устройство неизвестно. Оказывается, что ряд важных выводов о поведении системы можно делать, наблюдая лишь реакции выходной информации при изменении входной информации. Классический пример «черного ящика» – телевизор. Большинство людей, которые им пользуются, не имеют ни малейшего представления о том, как он устроен внутри. Но, нажимая кнопку включения телевизора (входная информация), они ожидают выходной информации – изображения и звука.
5. Очень важным методом кибернетики является метод моделирования.
Модель – это другой объект, процесс или формализованное описание, более удобное для рассмотрения, исследования, управления, интересующие нас характеристики которого подобны характеристикам реального объекта. После такой замены исследуется не первичный объект, а его модель. Результаты этих исследований распространяются на первичный объект (конечно, с известными оговорками).