
- •49. Теория винтовой пары
- •50. Самоторможение и кпд винтовой пары. Распределение осевой нагрузки витка по виткам резьбы
- •51. Расчёт резьбы на прочность. Равномерность болтового соединения.
- •52. Прочность болтов при нагружении соединения силами, сдвигающими детали в стыке
- •53. Прочность болтов, когда болт затянут, а внешняя нагрузка раскрывает стык деталей.
- •54. Механические передачи. Назначение, классификация характеристики.
- •55. Ременные передачи. Их достоинства и недостатки.
- •56. Кинематические и геометрические параметры ременной передачи
- •57. Силы в ременной передаче. Напряжение в ремне.
- •58. Скольжение в ременной передачи. Кривые скольжения и кпд. Силы в ременной передаче.
- •59. Особенности клиноременной передачи
- •60. Цепные передачи. Основные характеристики. Межосевое расстояние и длина цепи.
- •61. Силы в цепной передаче. Материалы цепей и звездочек.
- •62.Кинематика и динамика цепной передачи.
- •63. Общие сведения о шпоночных и шлицевых соединениях. Расчет шпоночных и шлицевых соединений.
- •64. Шпоночные соединения
- •65. Зубчатые (шлицевые) соединения
- •66. Червячная передача. Геометрия и кинематика червячного зацепления. Проверка червячных редукторов на нагрев.
- •67, 68. Червячные передачи. Геометрия и кинематика червячного зацепления. Проверка червячных редукторов на нагрев. Материалы для чп. Охлаждение и смазка
- •69. Зубчатые передачи. Классификация. Преимущества и недостатки
- •70. Геометрия и кинематика зп
- •71. Зп. Скольжение и трение в зацеплении
- •73. Зп. Контактные напряжения и контактная прочность
- •74. Условие работы зуба в зацеплении. Поломка зубьев. Меры предосторожности.
- •75. Зубчатые передачи. Расчетная нагрузка. Коэффициент нагрузки.
- •76. Расчет прямозубых цилиндрических передач на прочность по контактным напряжениям. Силы в зацеплении.
- •77. Расчёт прочности зубьев прямозубой цилиндрической передачи по напряжениям изгиба. Выбор модуля и числа зубьев.
- •78. Зубчатые передачи. Влияние зубьев на форму и прочность зубьев. Смещение инструмента при нарезании зубьев.
- •79. Косозубые цилиндрические передачи. Геометрия особенности зацепления, силы в зацеплении, расчет прочности зубьев.
- •80. Конические зубчатые передачи. Геометрические параметры. Силы в зацеплении. Расчет зубьев прямозубых конических передач.
- •81Передаточное отношение зубчатых передач, кпд, охлаждение и смазка
- •82Материалы и термообработка зубчатых колес
- •83Валы и Оси. Расчет Валов
- •84Подшипники.Подшипники скольжения
- •Достоинства
- •Недостатки
- •85Подшипники.Подшипники качения
- •86 Муфты
- •87 Расчет муфт
- •88 Заклёпочное соединение
- •Недостатки заклёпочных соединений
- •Преимущества заклёпочных соединений
- •90. Механический привод и его характеристики
- •91.Структурный анализ. Степень свободы кинематической цепи, степень подвижности механизма – определение и формула для расчёта
- •92. Классификация кинематических пар и кинематических цепей
- •93. Группы Ассура, определение класса, порядка и вида групп Ассура. Структурная формула механизма.
- •94. Теорема зацепления
- •95. Эвольвента
- •96. Основные параметры зубчатых колёс (модуль, диаметры и др.)
87 Расчет муфт
Предохронительные муфты
Исходными данными являются:
1. Номинальный крутящий момент Мкр.ном, передаваемый муфтой, Н·мм.
2. Расчетный крутящий момент Мкр срабатывания муфты Н·мм, во избежание случайных включений муфты берут Мкр=1,25 Мкр.ном.
3. Радиус расположения срезного штифта r, мм. Ориентировочно R=45…80 мм.
4. Материал предохранительного штифта: среднеуглеродистые стали. Например, сталь 45 (предел прочности на срез τср=400 МПа)
Проектировочный расчет:
1.
Диаметр предохранительного штифта,
мм: d=
2. Полученный по расчету диаметр штифта округляют до ближайшего большего значения по таблице:
3.
Уточняется радиус расположения срезного
штифта R:
Работоспособность кулачковых муфт определяется износом кулачков, зависящим от напряжений смятия на поверхностях соприкосновения. Эти напряжения рассчитывают приблизительно, исходя из допущения, что нагрузка распределяется равномерно между кулачками:
где: z — число кулачков полумуфты;
K — динамический коэффициент нагрузки.
σcм = 90...120 МПа — при включении без относительного вращения;
σcм = 50...70 МПа — при включении на малых оборотах;
σcм = 35...45 МПа — при включении на больших скоростях.
Для уменьшения изнашивания поверхность кулачков должна иметь высокую твёрдость, которая достигается поверхностнойтермообработкой или цементацией. Применение последней сохраняет вязкость сердцевины, которая повышает ударную вязкостькулачков. Муфты с цементацией кулачков изготовляют из сталей 15Х, 20Х, при поверхностной закалке — из сталей 40Х, 30ХН.
88 Заклёпочное соединение
Заклёпочное соединение — неразъёмное соединение деталей при помощизаклёпок. Обеспечивает высокую стойкость в условиях ударных и вибрационных нагрузок. На современном этапе развития технологии уступает место сварке и склеиванию, обеспечивающим большую производительность и более высокую прочность соединения.
Заклёпочные соединения делятся на:
прочные (рассчитанные только на восприятие и передачу силовых нагрузок),
плотные (герметичные) (обеспечивают герметичность конструкций в резервуарах с невысоким давлением),
прочноплотные (восприятие силовых нагрузок и герметичность соединения).
По конструкции заклёпочные соединения делятся на однорядные и многорядные с цепным или шахматным расположением заклёпок, а в зависимости от количества плоскостей среза — одно- и многосрезные[1].
По характеру воздействия нагрузки на заклёпочное соединение — швы с поперечной нагрузкой, перпендикулярной оси заклёпок, и продольной, параллельной оси заклёпок.
В зависимости от требований к поверхности, заклёпки могут иметь полукруглую головку, потайную, полупотайную или плоскую (в процессе клёпки для создания внутренних усилий сжатия, которые снижают возможность усталости материала).
Недостатки заклёпочных соединений
Трудоёмкость процесса.
Повышенная материалоёмкость соединения. Заклёпочный шов ослабляет основную деталь, поэтому она должна быть толще. Нагрузку несут заклёпки, поэтому их сечение должно соответствовать нагрузке.
Необходимость специальных мер для герметизации
Процесс сопровождается шумом и вибрацией. Это приводит к ряду профессиональных заболеваний у сборщиков и вызывает глухоту.