
- •Раздел 2. Трансформаторы
- •1.1Назначение и области применения трансформаторов
- •1.2Принцип действия трансформатора
- •Двухобмоточного трансформатора
- •1.3Конструктивное устройство 1-фазного трансформатора
- •Конструкции магнитопроводов
- •Основные типы 1-фазных трансформаторов: а) стержневого типа; б) броневого типа
- •Р ис. 2.4. Поперечное сечение стержня (а) и ярма (б)
- •На рисунке: 1 – стержень; 2 – обмотка; 3 – изоляционный цилиндр;
- •А) цилиндрическая однослойная; б) цилиндрическая многослойная; в) катушечная многослойная; г)винтовая.
- •1.4Режим холостого хода 1–фазного трансформатора
- •Напряжения, эдс и магнитного потока
- •Ток холостого хода идеального трансформатора
- •Холостой ход реального трансформатора
- •Режим холостого хода
- •Трансформатора, режим холостого хода
- •1.5 Работа 1-фазного трансформатора при нагрузке
- •Уравнения напряжений трансформатора
- •Приведение числа витков вторичной обмотки к числу витков первичной обмотки
- •Уравнения токов и напряжений приведённого трансформатора
- •Векторная диаграмма приведённого трансформатора
- •1.6Режим короткого замыкания трансформатора
- •При коротком замыкании
- •Трансформатора при коротком замыкании
- •1.7Изменение вторичного напряжения трансформатора Изменение вторичного напряжения
- •Внешняя характеристика трансформатора
- •2.8. 2.8. Потери и кпд трансформатора
- •1.8Трёхфазные трансформаторы Магнитные системы трёхфазных трансформаторов
- •Векторная диаграмма напряжений
- •Векторная диаграмма напряжений
- •Группы соединения обмоток
- •Особенности режима холостого хода трёхфазных трансформаторов или явления, возникающие при намагничивании трёхфазных трансформаторов
- •Гармоник тока холостого хода
- •Холостого хода
- •2.10. Несимметричная нагрузка трёхфазных трансформаторов
- •Метод симметричных составляющих
- •Сопротивление трансформатора для токов прямой и обратной последовательности
- •Обратной последовательности
- •Токи и потоки нулевой последовательности
- •Последовательности
- •Схемы замещения трансформатора для токов нулевой последовательности
- •Последовательности
- •Нулевой последовательности
- •Последовательности
- •Нулевой последовательности
- •Для токов нулевой последовательности
- •Нулевой последовательности
- •Для токов нулевой последовательности
- •Несимметричный режим работы при наличии токов нулевой последовательности
- •Несимметричные режимы работы при отсутствии токов нулевой последовательности
- •1.9Параллельная работа трансформаторов
- •1.10Специальные типы трансформаторов
- •Трансформатора
- •Трёхобмоточные трансформаторы
Рис. 2.42. Вектора первых и третьих
Гармоник тока холостого хода
Кривая потока будет иметь уплощённую форму, и кроме основной гармоники, из кривой потока можно выделить высшие гармоники, самая сильная из которых – третья (рис. 1.43). Фазные ЭДС и напряжения также несинусоидальны, и кроме основной гармоники содержат высшие. Частота третьей гармоники ЭДС:
(2.110)
и для промышленной
частоты
,
.
Рис. 2.43. Кривые тока холостого хода и
потока
Фазная ЭДС из-за влияния третьей гармоники увеличивается на 45 … 60%. Это явление нежелательное и опасное для потребителей. ГОСТом не допускается соединение по схеме Y/Y в трансформаторах с независимой магнитной системой. Следует отметить, что кривые линейных ЭДС не искажаются, т.к. в разности двух фазных ЭДС третьи гармоники исчезают.
Трёхфазный стержневой трансформатор со связанной магнитной системой, схема соединения Y/Y (рис. 2.44).
А
Рис. 2.44. Стержневой трёхфазный
трансформатор
налогично,
как и в случае с независимой магнитной
системой, третьи гармоники тока выпадают
из кривой тока х.х., и появляются третьи
гармоники потока (рис. 2.45).
Рис. 2.45. Третьи гармоники токаХолостого хода
Третьи гармоники потока по замкнутому пути в сердечнике замыкаться не могут, так как в каждый момент времени имеют одинаковое направление. Поэтому они замыкаются от одного ярма к другому через трансформаторное масло, воздух, крепёжные детали и стенки бака, что приводит к уменьшению величин третьих гармоники потока, и искажение фазных ЭДС будет незначительным. Но замыкание потока через крепёжные детали и стенки бака вызывает добавочные потери на вихревые токи, что приводит к уменьшению КПД.
Схема соединения Y0 /Y (рис. 2.46).
Рис. 2.46. Схема соединения Y0
/Y
Третьи гармоники тока замыкаются по нулевому проводу, при этом ток холостого хода в каждой фазе содержит третьи гармоники тока. А поскольку ток является несинусоидаильной функцией времени, то поток изменяется во времени синусоидаильно, и процесс намагничивания происходит без особенностей.
Схема соединения Δ/Y (рис. 2.47). Магнитная система любая.
Рис. 2.47. Схема соединения Δ/Y
Так как третьи гармоники тока холостого хода могут замыкаться по контуру треугольника, то они не выпадают из кривой тока холостого хода, а, значит, не появляются третьи гармоники потока, и не наблюдается искажения фазных ЭДС. Процесс намагничивания происходит без особенностей.
Схема соединения Y/Δ (рис. 2.48). Магнитная система любая.
Рис. 2.48. Схема соединения Y/
Δ
Третьи гармоники тока х.х. выпадают из кривой тока х.х., появляются третьи гармоники потока Ф (3), которые наводят ЭДС третьей гармоники в первичной и вторичной обмотках: е1(3), е2(3) .
Под действием ЭДС е2(3) во вторичной обмотке будет протекать ток i2(3). Создаваемые этим током третьи гармоники потока вторичной обмотки Ф2(3) будут почти полностью компенсировать потоки Ф (3). Искажения фазных ЭДС и напряжений практически не будет: они синусоидальны. Векторная диаграмма потоков, ЭДС и токов третьей гармоники представлена на рис. 2.49.
Рис. 2.49. Диаграмма ЭДС, потоков и токов
(третьи гармоники)
Вывод:
Чтобы избежать неблагополучных явлений при намагничивании сердечника трансформатора, одну из обмоток рекомендуется соединять в треугольник.