
- •1.Декартова и полярная системы координат на плоскости. Формулы,связующие координаты точки в этих системах. Декартова система координат в пространстве.
- •2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
- •3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
- •4.Деление отрезка в заданном отношении.
- •5. Понятие радиус-вектора. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •6.Действия с геометрическими векторами в координатной форме.Признак коллинеарности векторов.
- •7.Скалярное произведение геометрических векторов и его свойства. Признак ортогональности векторов.
- •8.Вычисление скалярного произведения векторов через их координаты, длина вектора, расстояние между двумя точками. Вычисление косинуса угла между двумя точками.
- •9. Направляющие косинусы вектора и их свойства.
- •10.Векторное произведение: определение ,вычисление и свойства.
- •11. Смешанное произведение: определение, вычисление, геометрический смысл.
- •12. Общее уравнение прямой на плоскости и его исследование.
- •13. Уравнение прямой с угловым коэффициентом. Геометрический смысл коэффициентов. Пучок прямых
- •18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
- •19.Условия параллельности и перпендикулярности прямых в пространстве.
- •20. Условия параллельности и перпендикулярности плоскости и прямой в пространстве.
- •21.Угол между прямой и плоскостью.
- •22.Окружность и ее уравнение.
- •23.Определение эллипса и его каноническое уравнение.
- •24. Определение гиперболы и ее каноническое уравнение.
- •25.Определение параболы и ее каноническое уравнение.
- •27.Действия с матрицами (сложение, умножение на скаляр, перемножение матриц, транспонирование матриц). Законы, которым эти действия удовлетворяют.
- •28. Определение определителя и его свойства.
- •29.Определитель, минор и алгебраическое дополнение элемента определителя.
- •30.Обратная матрица. Теорема о существовании и единственности обратной матрицы.Способы вычисления обратной матрицы.
- •3) Способы вычисления обратной матрицы:
- •А) Метод Гаусса—Жордана
- •Б) с помощью матрицы алгебраических дополнений
- •В) Методы Шульца
- •31. Определение ранга матрицы. Базисный минор. Вычисление ранга матрицы с помощью элементарных преобразований.
- •3) Вычисление ранга матрицы с помощью элементарных преобразований.
- •32)Система линейных уравнений и её решение. Различные формы записи линейных уравнений. Определение однородной, неоднородной, совместной, несовместной, определённой и неопределённой систем.
- •А) Векторная форма записи
- •Б) Матричная форма записи
- •33)Матричный способ решения систем линейных уравнений. Пример решения неоднородной слау
- •34) Формулы Крамера.
- •35) Теоре́ма Кро́некера — Капе́лли
- •36)Условия определённости и неопределённости систем линейных уравнений
- •37)Решение систем линейных уравнений метод Гаусса
- •38)Теорема о совместимости однородной системы линейных уравнений
- •39)Теорема о существовании ненулевых решений однородных линейных уравнений.
- •40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
- •41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
- •42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
- •2) Критерий линейной зависимости векторов
- •43) Базис линейного пространства. Примеры базисов в
- •44. Теорема о единственности разложении вектора линейного пространства по базису.
- •45.Подпространство линейного пространства. Линейная оболочка системы векторов. Сумма и пересечение подпространств. Примеры подпространств.
- •46.Собственные числа и собственные векторы квадратной матрицы и их свойства.
- •47.Характерестическое уравнение , соответствующие квадратной матрице . Теорема о связи собственных чисел матрицы с корнями этого уравнения.
- •48. Линейные операторы. Основные понятия.
- •49. Комплексные числа в алгебраической форме записи .Геометрическое изображение комплексных чисел. Действия с комплексными числами в алгебраической форме записи .Решение алгебраических уравнений
- •50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
- •51. Действия с комплексными числами. Формула Муавра
- •52)Линейная балансовая модель
- •53) Квадратные формы. Критерий Сильвестра
- •Определение
- •Связанные определения
- •Свойства
- •Критерий положительной определённости квадратичной формы
- •Критерий отрицательной определённости квадратичной формы
28. Определение определителя и его свойства.
Квадратной матрице А порядка n можно сопоставить число det А
(или IAI, или дельта ), называемое ее определителем. Определитель матрицы А также называют ее детерминантом. Правило вычисления детерминанта для матрицы порядка N является
довольно сложным для восприятия и применения . Однако известны
методы, позволяющие реализовать вычисление определителей высоких
порядков на основе определителей низших порядков.
Свойства определителей:
Свойство 1 «<Равноправность строк и столбцов» . Определитель
не изменится, если его строки заменить столбцами, и наоборот.
Свойство 2. При перестановке двух параллельных рядов определитель меняет знак.
Свойство 3. Определитель, имеющий два одинаковых ряда , равен нулю.
Свойство 4. Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.
Свойство 5. Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.
Свойство 6. Определитель не изменится, если к элементам одного ряда прибавить
соответствующие элементы параллельного ряда, умноженные на любое
число .
Свойство 7. Определитель равен сумме произведений элементов некоторого
ряда на соответствующие им алгебраические дополнения.
Свойство 8. Сумма произведений элементов какого-либо ряда определителя на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю.
29.Определитель, минор и алгебраическое дополнение элемента определителя.
Квадратной матрице А порядка n можно сопоставить число det А
(или IAI, или дельта ), называемое ее определителем. Определитель матрицы А также называют ее детерминантом. Правило вычисления детерминанта для матрицы порядка N является
довольно сложным для восприятия и применения . Однако известны
методы, позволяющие реализовать вычисление определителей высоких
порядков на основе определителей низших порядков.
Минором некоторого элемента aij определителя n-го порядка называется определитель n -1-го порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент.
Алгебраическим дополнением элемента aij определителя называется его минор, взятый со знаком «плюс», если сумма i + j -четное число, и со знаком «минус», если эта сумма нечетная. Обозначается
Aij :Aij = (-1)i+j. mij.
30.Обратная матрица. Теорема о существовании и единственности обратной матрицы.Способы вычисления обратной матрицы.
Обра́тная ма́трица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:
Теорема Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.
Справедливы следующие равенства:
(А-1)=(А)-1;
(А-1)-1=А;
(А1А2)-1=А2-1А1-1;
(АТ)-1=(А-1)Т.
Обратную
матрицу
можно
найти по следующей формуле:
,
где
–
определитель матрицы
,
–
транспонированная матрица алгебраических
дополнений соответствующих элементов
матрицы
.
Алгоритм решения заключается в том, что к данной матрице присоединяем единичную того же порядка и обнуляем элементы так, чтобы исходная таблица стала единичной, а полученная вместо единичной матрица и будет являться обратной.