
- •1.Декартова и полярная системы координат на плоскости. Формулы,связующие координаты точки в этих системах. Декартова система координат в пространстве.
- •2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
- •3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
- •4.Деление отрезка в заданном отношении.
- •5. Понятие радиус-вектора. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •6.Действия с геометрическими векторами в координатной форме.Признак коллинеарности векторов.
- •7.Скалярное произведение геометрических векторов и его свойства. Признак ортогональности векторов.
- •8.Вычисление скалярного произведения векторов через их координаты, длина вектора, расстояние между двумя точками. Вычисление косинуса угла между двумя точками.
- •9. Направляющие косинусы вектора и их свойства.
- •10.Векторное произведение: определение ,вычисление и свойства.
- •11. Смешанное произведение: определение, вычисление, геометрический смысл.
- •12. Общее уравнение прямой на плоскости и его исследование.
- •13. Уравнение прямой с угловым коэффициентом. Геометрический смысл коэффициентов. Пучок прямых
- •18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
- •19.Условия параллельности и перпендикулярности прямых в пространстве.
- •20. Условия параллельности и перпендикулярности плоскости и прямой в пространстве.
- •21.Угол между прямой и плоскостью.
- •22.Окружность и ее уравнение.
- •23.Определение эллипса и его каноническое уравнение.
- •24. Определение гиперболы и ее каноническое уравнение.
- •25.Определение параболы и ее каноническое уравнение.
- •27.Действия с матрицами (сложение, умножение на скаляр, перемножение матриц, транспонирование матриц). Законы, которым эти действия удовлетворяют.
- •28. Определение определителя и его свойства.
- •29.Определитель, минор и алгебраическое дополнение элемента определителя.
- •30.Обратная матрица. Теорема о существовании и единственности обратной матрицы.Способы вычисления обратной матрицы.
- •3) Способы вычисления обратной матрицы:
- •А) Метод Гаусса—Жордана
- •Б) с помощью матрицы алгебраических дополнений
- •В) Методы Шульца
- •31. Определение ранга матрицы. Базисный минор. Вычисление ранга матрицы с помощью элементарных преобразований.
- •3) Вычисление ранга матрицы с помощью элементарных преобразований.
- •32)Система линейных уравнений и её решение. Различные формы записи линейных уравнений. Определение однородной, неоднородной, совместной, несовместной, определённой и неопределённой систем.
- •А) Векторная форма записи
- •Б) Матричная форма записи
- •33)Матричный способ решения систем линейных уравнений. Пример решения неоднородной слау
- •34) Формулы Крамера.
- •35) Теоре́ма Кро́некера — Капе́лли
- •36)Условия определённости и неопределённости систем линейных уравнений
- •37)Решение систем линейных уравнений метод Гаусса
- •38)Теорема о совместимости однородной системы линейных уравнений
- •39)Теорема о существовании ненулевых решений однородных линейных уравнений.
- •40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
- •41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
- •42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
- •2) Критерий линейной зависимости векторов
- •43) Базис линейного пространства. Примеры базисов в
- •44. Теорема о единственности разложении вектора линейного пространства по базису.
- •45.Подпространство линейного пространства. Линейная оболочка системы векторов. Сумма и пересечение подпространств. Примеры подпространств.
- •46.Собственные числа и собственные векторы квадратной матрицы и их свойства.
- •47.Характерестическое уравнение , соответствующие квадратной матрице . Теорема о связи собственных чисел матрицы с корнями этого уравнения.
- •48. Линейные операторы. Основные понятия.
- •49. Комплексные числа в алгебраической форме записи .Геометрическое изображение комплексных чисел. Действия с комплексными числами в алгебраической форме записи .Решение алгебраических уравнений
- •50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
- •51. Действия с комплексными числами. Формула Муавра
- •52)Линейная балансовая модель
- •53) Квадратные формы. Критерий Сильвестра
- •Определение
- •Связанные определения
- •Свойства
- •Критерий положительной определённости квадратичной формы
- •Критерий отрицательной определённости квадратичной формы
50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
Формула Эйлера.
где e — основание натурального логарифма,
i — мнимая единица.
Если точка z
комплексной плоскости имеет декартовые
координаты
:
Показательная и тригонометрические функции в области комплексных чисел связаны между собой формулой Эйлера
-
показательная запись .Так же, как и в
тригонометрической форме, здесь
,
.
51. Действия с комплексными числами. Формула Муавра
Суммой двух комплексных чисел z1=х1+iy1 и z2=х2+iy2 называется комплексное число, определяемое равенством
z1+z2=(x1+x2)+i(y1+y2).
Сложение комплексных чисел обладает переместителъным (коммутативным) и сочетательным (ассоциативным) свойствами:
z1+z2=z2+z1
(z1+z2)+z3=z1+(z2+z3).
Вычитание определяется как действие, обратное сложению. Разностью двух комплексных чисел z1 и z2 называется такое комплексное число z, которое, будучи сложенным с z2, дает число zl т. е. z=z1-z2, если z+z2=z1.
Если z1=x1+iy1, z2=x2+iy2, то из этого определения легко получить z:
z=z1-z2=(x1-x2)+i(y1-y2).
Произведением к омплексных чисел z1 =х1 +iy1 и z2=х2+iy2 называется комплексное число, определяемое равенством
z=z1 z2 =(x1 x2- у1 у2)+i(x1 y2+y1x 2 ).
Умножение комплексных чисел обладает переместительным, сочетательным и распределительным (дистрибутивным) свойствами:
z1z2=z2z1
(z1z2)z3=z1(z2z3).
z1(z2+z3)=z1z2+z1z3.
Деление определяется как действие, обратное умножению. Частным двух комплексных чисел z1 и z2≠0 называется комплексное число z, которое, будучи умноженным на z2, дает число z1, т. е. z1/z2=z, если z2z=z1.
Если положить z1=x1+iy1; z2=х2+iy2≠0, z=х+iy, то из равенства (х2+iy2)(x+iy)=x1+iy1 следует
Решая систему, найдем значения х и у:
Таким образом
Формула Муавра
для комплексных чисел
утверждает что,
.
Она следует из формулы Эйлера
52)Линейная балансовая модель
Обозначим через xi валовый выпуск продукции i-й отрасли за планируемый период и через yi – конечный продукт, идущий на внешнее для рассматриваемой системы потребление
Таким образом, разность xi - yi составляет часть продукции i-й отрасли, предназначенную для внутрипроизводственного потребления. Будем в дальнейшем полагать, что баланс составляется не в натуральном, а в стоимостном разрезе.
Обозначим через xik часть продукции i-й отрасли, которая потребляется k-й отраслью, для обеспечения выпуска ее продукции в размере хk.
Очевидно, величины, расположенные в строках таблицы 1 связаны следующими балансовыми равенствами :
Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнение баланса за предшествующий период определить исходные данные на планируемый период.
Будем снабжать штрихом ( х’ik , y’i и т.д. ) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха – аналогичные данные, связанные с планируемым периодом. Балансовые равенства ( 1 ) должны выполняться как в истекшем, так и в планируемом периоде.
Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного продукта, ассортиментным вектором :
Зависимость между двумя этими векторами определяется балансовыми равенствами ( 1 ). Однако они не дают возможности определить по заданному, например, вектор у необходимый для его обеспечения вектор-план х, т.к. кроме искомых неизвестных хk , содержат n2 неизвестных xik , которые в свою очередь зависят от xk.
Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений :
Величины aik называются коэффициентами прямых затрат или технологическими коэффициентами. Они определяют затраты продукций i-й отрасли, используемые k-й отраслью на изготовление ее продукции, и зависят главным образом от технологии производства в этой k-й отрасли. С некоторым приближением можно полагать, что коэффициенты aik постоянны в некотором промежутке времени, охватывающим как истекший, так и планируемый период, т.е., что
Исходя из этого предложения имеем
т.е. затраты i-й отрасли в k-ю отрасль пропорциональны ее валовому выпуску, или, другими словами, зависят линейно от валового выпуска xk. Поэтому равенство ( 5 ) называют условием линейности прямых затрат.
Рассчитав коэффициенты прямых затрат aik по формуле ( 4 ), используя данные об исполнении баланса за предшествующий период либо определив их другим образом, получим матрицу
которую называют матрицей затрат. Заметим, что все элементы aik этой матрицы неотрицательны. Это записывают сокращено в виде матричного неравенства А>0 и называют такую матрицу неотрицательной.
Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл.1
Подставляя значения xik = aik = xk во все уравнения системы ( 1 ), получим линейную балансовую модель : характеризующую баланс затрат - выпуска продукции, представленный в табл.1
Система уравнений ( 6 ) может быть записана компактнее, если использовать матричную форму записи уравнений:
Уравнения ( 6 ) содержат 2n переменных ( xi и yi ). Поэтому, задавшись значениями n переменных, можно из системы ( 6 ) найти остальные n - переменных.
Будем исходить из заданного ассортиментного вектора У = ( y1 , y2 , … , yn ) и определять необходимый для его производства вектор-план Х = ( х1 , х2 , … хn ).
Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей:
Пусть исполнение баланса за предшествующий период характеризуется данными, помещенными в табл.2
Рассчитываем по данным этой таблицы коэффициенты прямых затрат:
Эти коэффициенты записаны в табл.2 в углах соответствующих клеток.
Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2
х1 - 0.2х1 - 0.4х2 = у1
х2 - 0.55х1 - 0.1х2 = у2
Эта система двух уравнений может быть использована для определения х1 и х2 при заданных значениях у1 и у2, для использования влияния на валовый выпуск любых изменений в ассортименте конечного продукта и т.д.
Так, например, задавшись у1=240 и у2=85, получим х1=500 и х2=400, задавшись у1=480 и у2=170, получим х1=1000 и х2=800 и т.д.