- •1.Декартова и полярная системы координат на плоскости. Формулы,связующие координаты точки в этих системах. Декартова система координат в пространстве.
- •2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
- •3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
- •4.Деление отрезка в заданном отношении.
- •5. Понятие радиус-вектора. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •6.Действия с геометрическими векторами в координатной форме.Признак коллинеарности векторов.
- •7.Скалярное произведение геометрических векторов и его свойства. Признак ортогональности векторов.
- •8.Вычисление скалярного произведения векторов через их координаты, длина вектора, расстояние между двумя точками. Вычисление косинуса угла между двумя точками.
- •9. Направляющие косинусы вектора и их свойства.
- •10.Векторное произведение: определение ,вычисление и свойства.
- •11. Смешанное произведение: определение, вычисление, геометрический смысл.
- •12. Общее уравнение прямой на плоскости и его исследование.
- •13. Уравнение прямой с угловым коэффициентом. Геометрический смысл коэффициентов. Пучок прямых
- •18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
- •19.Условия параллельности и перпендикулярности прямых в пространстве.
- •20. Условия параллельности и перпендикулярности плоскости и прямой в пространстве.
- •21.Угол между прямой и плоскостью.
- •22.Окружность и ее уравнение.
- •23.Определение эллипса и его каноническое уравнение.
- •24. Определение гиперболы и ее каноническое уравнение.
- •25.Определение параболы и ее каноническое уравнение.
- •27.Действия с матрицами (сложение, умножение на скаляр, перемножение матриц, транспонирование матриц). Законы, которым эти действия удовлетворяют.
- •28. Определение определителя и его свойства.
- •29.Определитель, минор и алгебраическое дополнение элемента определителя.
- •30.Обратная матрица. Теорема о существовании и единственности обратной матрицы.Способы вычисления обратной матрицы.
- •3) Способы вычисления обратной матрицы:
- •А) Метод Гаусса—Жордана
- •Б) с помощью матрицы алгебраических дополнений
- •В) Методы Шульца
- •31. Определение ранга матрицы. Базисный минор. Вычисление ранга матрицы с помощью элементарных преобразований.
- •3) Вычисление ранга матрицы с помощью элементарных преобразований.
- •32)Система линейных уравнений и её решение. Различные формы записи линейных уравнений. Определение однородной, неоднородной, совместной, несовместной, определённой и неопределённой систем.
- •А) Векторная форма записи
- •Б) Матричная форма записи
- •33)Матричный способ решения систем линейных уравнений. Пример решения неоднородной слау
- •34) Формулы Крамера.
- •35) Теоре́ма Кро́некера — Капе́лли
- •36)Условия определённости и неопределённости систем линейных уравнений
- •37)Решение систем линейных уравнений метод Гаусса
- •38)Теорема о совместимости однородной системы линейных уравнений
- •39)Теорема о существовании ненулевых решений однородных линейных уравнений.
- •40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
- •41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
- •42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
- •2) Критерий линейной зависимости векторов
- •43) Базис линейного пространства. Примеры базисов в
- •44. Теорема о единственности разложении вектора линейного пространства по базису.
- •45.Подпространство линейного пространства. Линейная оболочка системы векторов. Сумма и пересечение подпространств. Примеры подпространств.
- •46.Собственные числа и собственные векторы квадратной матрицы и их свойства.
- •47.Характерестическое уравнение , соответствующие квадратной матрице . Теорема о связи собственных чисел матрицы с корнями этого уравнения.
- •48. Линейные операторы. Основные понятия.
- •49. Комплексные числа в алгебраической форме записи .Геометрическое изображение комплексных чисел. Действия с комплексными числами в алгебраической форме записи .Решение алгебраических уравнений
- •50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
- •51. Действия с комплексными числами. Формула Муавра
- •52)Линейная балансовая модель
- •53) Квадратные формы. Критерий Сильвестра
- •Определение
- •Связанные определения
- •Свойства
- •Критерий положительной определённости квадратичной формы
- •Критерий отрицательной определённости квадратичной формы
36)Условия определённости и неопределённости систем линейных уравнений
Теорема: Если ранг основной матрицы совместной системы равен числу неизвестных, то система является определённой
Теорема: Если ранг основной матрицы совместной системы меньше числа неизвестных, то система является неопределённой.
37)Решение систем линейных уравнений метод Гаусса
Для того чтобы решить систему уравнений
выписывают
расширенную матрицу этой системы
и
над строками этой матрицы производят
элементарные преобразования, приводя
ее к виду, когда ниже главной диагонали,
содержащей элементы
будут
располагаться нули. Разрешается: 1)
изменять порядок строк матрицы, что
соответствует изменению порядка
уравнений; 2) умножать строки на любые
отличные от нуля числа, что соответствует
умножению соответствующих уравнений
на эти числа; 3) прибавлять к любой строке
матрицы другую, умноженную на отличное
от нуля число, что соответствует
прибавлению к одному уравнению системы
другого, умноженного на число. С помощью
этих преобразований каждый раз получается
расширенная матрица новой системы,
равносильной исходной, т. е. такой
системы, решение которой совпадает с
решением исходной системы.
38)Теорема о совместимости однородной системы линейных уравнений
. Если свободные члены системы линейных уравнений равны 0, то система однородна.
a
11
x1
+ a12
x2+…+a1nx=0
a21x1+a22x2+…+a2nxn=0
………………………………….
am1x1+am2x2+…+amnxn=0
Однородная система всегда совместна, т. к. набор чисел 0.0..0.всегда является решением системы, такое решение называется тревиальным.
39)Теорема о существовании ненулевых решений однородных линейных уравнений.
Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, т. е. r<n.
Необходимость.
Так как ранг не может превосходить размера матрицы, то, очевидно, r<=n. Пусть r=n. Тогда один из минеров размера nхn отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение:
Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r<n.
Достаточность:
Пусть r<n. Тогда однородная система, будучи совместной, является неопределенной. Значит, она имеет бесчисленное множество решений, т. е. имеет и ненулевые решения. Пусть дана однородная система n линейных уравнений с n неизвестными
Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, т. е. r
Для того, чтобы однородная система n линейных уравнений с n неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель D был равен нулю, т. е. D=0.
40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
Векторное (линейное) пространство — это математическая структура, которая формируется набором элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Введённые операции подчинены восьми аксиомам. Скаляром же может являться элемент вещественного, комплексного или любого другого поля чисел. Частным случаем векторов подобного пространства являются обычные евклидовы вектора, которые используются, к примеру, для демонстрации физических сил. При этом следует отметить, что вектор как элемент векторного пространства не обязательно должен быть представлен в качестве направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы.
Свойства:
Векторное пространство является абелевой группой по сложению.
Нейтральный элемент
является
единственным, что вытекает из групповых
свойств.
для
любого
.Для любого противоположный элемент
является
единственным, что вытекает из групповых
свойств.
для
любого
.
для
любых
и
.
для
любого
.
Для любых векторов x, y и z из Rn и любых чисел α и β справедливо:
1. x + y = x + y, сложение коммутативно;
2. x + (y + z) = (x + y)+ z, сложение ассоциативно;
3. x + θ = x;
4. x + (−x) = θ;
5. α(x + y) = αx + αy, умножение на число дистрибутивно относительно сложения векторов;
6. α(βx) = (αβ)x, умножение на число ассоциативно;
7. (α + β)x = αx + βx , умножение вектора на число дистрибутивно относительно сложения чисел.
8. 1·x = x.
Пространство Rn − n-мерное векторное пространство, dimRn = n.
Если в пространстве Rn определен естественный базис e1, e2, ... en ,
e1= (1, 0, 0,..., 0, 0), e2= (0, 1, 0,..., 0, 0), ..., en-1= (0, 0, 0,..., 1, 0), en= (0, 0, 0,..., 0, 1),
то компоненты вектора x = (x1, x2, ..., xn) из Rn являются координатами вектора x в естественном базисе e1, e2, ... en:
x = (x1, x2, ..., xn) = x1e1+ x2e2+ ...+ xnen.
Арифметическим вектором называется упорядоченная совокупность n чисел.
Обозначается x = (x1, x2, ..., xn);
числа x1, x2, ..., xn называются компонентами арифметического вектора.
Для арифметических векторов определены линейные операции — сложение арифметических векторов и умножение вектора на число:
для любых x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) и любого числа α справедливо:
x + y = (x1+ y1, x2 +y2, ..., xn+ yn); αx = (αx1, αx2, ..., αxn).
Множество арифметических векторов, для которых определены операции сложения и умножения на число называется пространством арифметических векторов Rn.
Вектор θ = (0, 0, ..., 0) называется нулевым вектором Rn,
а вектор −x = (−x1, −x2, ..., −xn) — противоположным вектором для вектора x в Rn.
