
- •Пояснительная записка
- •Содержание
- •Введение
- •1 Характеристика выпускаемой продукции
- •2 Характеристика сырьевых материалов
- •3 Обоснование общей технологии производства продукции, видов основного оборудования
- •4 Анализ технологического процесса
- •4.1 Разработка функциональной, технологической и операторной схем производства
- •Известняк в сырьевом бункере; 2 – валковая дробилка; 3 – грохот сортировочный; 4 – шлак в сырьевом бункере;
- •4.2 Разработка технологического регламента
- •Список использованных источников
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Сибирский государственный индустриальный университет»
Кафедра архитектуры и строительных материалов
Пояснительная записка
к курсовой работе по дисциплине:
«Процессы и аппараты технологии строительных материалов»
Тема: Производство шлакопортландцемента
Выполнил: Тюменцев С.А., ст.гр. СМ-10
Руководитель: к.т.н., доцент, Камбалина И.В.
Дата допуска к защите: _________
Новокузнецк
2012
Содержание
Введение………………………………………………………………….……………..4
Характеристика выпускаемой продукции…………………………….…………..5
Характеристика сырьевых материалов……………………………………………..11
Обоснование общей технологии производства продукции, видов основного оборудования…………………………………………………………………………14
Анализ технологического процесса……………………………………………….18
Разработка функциональной, технологической и операторной схем производства………………………………………………………………………18
Разработка технологического регламента…………………………………….21
Список использованных источников………………………………………………….30
Введение
Шлакопортландцемент - гидравлическое вяжущее вещество, получаемое путем тонкого измельчения портландцементного клинкера совместно с гранулированным доменным и электротермофосфорным шлаком, а также с двуводным гипсом. Для получения быстротвердеющего шлакопортландцемента порошок портландцемента иногда размалывают с гранулированным шлаком. Шлака в шлакопортландцементе должно быть не менее 21% и не более 80% по массе (ГОСТ 10178 -85). Гипс вводят в шлакопортландцемент для регулирования сроков схватывания, а также в качестве активизатора твердения шлака.
1 Характеристика выпускаемой продукции
Шлакопортландцемент - гидравлическое вяжущее вещество, получаемое путем тонкого измельчения портландцементного клинкера совместно с гранулированным доменным и электротермофосфорным шлаком, а также с двуводным гипсом. Для получения быстротвердеющего шлакопортландцемента порошок портландцемента иногда размалывают с гранулированным шлаком. Шлака в шлакопортландцементе должно быть не менее 21% и не более 80% по массе (ГОСТ 10178 -85). Гипс вводят в шлакопортландцемент для регулирования сроков схватывания, а также в качестве активизатора твердения шлака.
По своим физико-механическим свойствам шлакопортландцемент близок к обычному портландцементу, но выгодно отличается от него более низкой стоимостью. При прочих равных условиях стоимость его на 10 - 15% ниже стоимости портландцемента.
B зависимости от прочности на сжатие шлакопортландцемент выпускают трех марок: 300, 400, 500.
Вследствие меньшего содержания гидрата окиси кальция продукты гидрации шлакопортландцемента более устойчивы, что обусловливает повышенные солестойкость и водостойкость.
Строительно-технические свойства шлакопортландцемента обусловливают и области его практического применения - те же, что и портландцемента аналогичных марок. Его целесообразно использовать для производства монолитных и сборных железобетонных конструкций и деталей, в особенности с применением тепловлажностной обработки, а также для изготовления строительных растворов. Шлакопортландцемент предназначен в основном для бетонных и железобетонных наземных, а также подземных и подводных конструкций, подвергающихся воздействию пресных, а также минерализированных вод с учетом норм агрессивности воды - среды.
Вследствие пониженного тепловыделения при твердении и малой усадки шлакопортландцемента его можно весьма эффективно применять для внутримассивного бетона гидротехнических сооружений. В силу пониженной морозостойкости шлакопортландцемента его нельзя применять для бетонных и железобетонных конструкций, подвергающихся систематическому попеременному замораживанию и оттаиванию или увлажнению и высыханию. Твердение шлакопортландцемента может быть разделено на два периода: первичный — гидратация и твердение клинкерной части цемента— и вторичный — химическое взаимодействие продуктов гидратации клинкерной части с доменными гранулированными шлаками. При гидратации трехкальциевого силиката клинкера выделяется гидрат окиси кальция, взаимодействующий с глиноземом и кремнеземом шлака с образованием гидросиликатов и гидроалюминатов кальция. Схематически твердение шлакопортландцемента можно себе представить как результат ряда процессов, протекающих одновременно, а именно: гидролиза и гидратации клинкерных минералов; взаимодействие гидрата окиси кальция с глиноземом и кремнеземом, находящимися в шлаковом стекле, с образованием гидросиликатов, гидроалюминатов, а также гидросиликоалюминатов кальция; взаимодействие трехкальциевого гидроалюмината кальция клинкера с сульфатом кальция с образованием гидросульфоалюмината кальция.
Шлакопортландцемент твердеет несколько медленнее, чем портландцемент, в особенности при пониженных положительных температурах. Это объясняется значительным содержанием шлака. Однако при тончайшем помоле, в особенности двухступенчатом, и содержании шлака около 30-35% скорость твердения шлакопортландцемента такая же. Однако он удовлетворяет общим для всех клинкерных цементов нормам: начало схватывания — не ранее 45 мин и конец — не позднее 10 ч. С понижением температуры прирост прочности сильно снижается. Повышенная температура при достаточной влажности среды оказывает на твердение шлакопортлаидцемента более благоприятное влияние, чем на твердение портландцемента. По пределу прочности при сжатии и изгибе шлакопортландцемент разделяется на марки 200, 300, 400 и 500. Быстротвердеющий шлакопортландцемент должен иметь в трехсуточном возрасте предел прочности при сжатии не менее 200 и при изгибе не менее 35 кг/см2 Водостойкость бетонов на шлакопортландцементе выше, чем на портландцементе, из-за отсутствия в них свободного гидрата окиси кальция: в шлако-портландцементном бетоне она связана шлаком в труднорастворимые гидроалюминаты и низкоосновные гидросиликаты кальция, тогда как в портландцементном бетоне гидрат окиси кальция в значительном количестве содержится в свободном виде и может вымываться, ослабляя бетон.Шлакопортландцементный бетон обладает удовлетворительной морозостойкостью и воздухостойкостью. Однако он все же менее стоек, чем бетон на портландцементе. Это объясняется тем, что низкоосновные гидросиликаты более склонны к деформациям при изменении состояния среды и менее способны сопротивляться совместному действию воды и мороза.
Шлакопортландцемент характеризуется пониженным или умеренным тепловыделением при твердении, а также меньшими объемными деформациями в растворе и бетоне - усадкой (на воздухе) и набуханием (в воде).
Плотность шлакопортландцемента колеблется в пределах 2,8—3 г/см3, уменьшаясь с увеличением содержания в цементе гранулированного доменного шлака. Средняя плотность рыхлонасыпном состоянии 900—1200 кг/м3, а в уплотненном —1400—1700 кг/м3.
Водопотребность шлакопортландцемента существенно не отличается от водопотребности обычных портландцементов. В ряде случаев при равной удобообрабатываемости в растворные или бетонные смеси на шлакопортландцементе нужно добавлять воды меньше, чем при использовании портландцемента.
Водоотделение из теста, полученного затворением шлакопортландцемента, несколько больше, чем из теста портландцемента. С увеличением тонкости помола его водоудерживающая способность значительно возрастает.
Скорость схватывания зависит от химического состава шлака и соотношения в шлакопортландцементе шлака и портландцемеитного клинкера, а также от содержания гипса. Добавление 30—50 % шлака к быстросхватывающемуся измельченному клинкеру (даже без гипса) позволяет получать, как правило, нормально и медленно схватывающийся продукт. Введение гипса, замедляя схватывание портландцемеитного клинкера, значительно ускоряет схватывание шлакопортландцемента, возбуждая гидравлическую активность шлака.
Шлакопортландцемент соответственно ГОСТ 10178—76 (с изм.) разделяют по показателям прочности на марки 300, 400 и 500.
Активность шлакопортландцемента при одинаковой тонкости помола определяется, главным образом, оптимальным для данного шлака химическим и минеральным составом клинкера и соотношением между шлаком и клинкером. Для производства шлакопортландцемента предпочтителен клинкер активностью 40—50 МПа с умеренно повышенным содержанием С3А (до 12 %) и преобладанием C3S в силикатной части.
Шлакопортландцемент характеризуется относительно медленным нарастанием прочности в начальные сроки твердения, что особенно ощутимо при испытании образцов из пластичного раствора. В более отдаленные сроки твердения прочность обыкновенного шлакопортландцемента возрастает и через 2—3 мес даже превосходит прочность портландцемента той же марки.
Рядовой шлакопортландцемент по сравнению с портландцементом при схватывании и твердении более чувствителен к влиянию температуры окружающей среды. При пониженных положительных температурах (2—6°С) его схватывание и твердение значительно замедляются, а при тепловлажностной обработке резко ускоряются. Термообработка бетонов на шлакопортландцементе при 80—95°С способствует ускорению процессов твердения, причем через 28 суток прочность пропаренных бетонов в 1,5—2 раза превосходит прочность тех же бетонов, твердевших при обычной температуре (15—20 °С).
Активность обычных шлакопортландцементов и портландцементов, измельченных до удельной поверхности около 3000 см2/г, при длительном хранении изменяется примерно одинаково. Быстротвердеющий же шлакопортландцемент при хранении вследствие значительной удельной поверхности относительно быстро теряет активность и особенно способность к интенсивному росту прочности в ранние сроки твердения (1—3 суток). Поэтому быстротвердеющие шлакопортландцементы следует применять после изготовления в первые 5—7 суток и во всяком случае не позднее двух недель. В эти сроки прочность цемента при хранении снижается относительно мало.
Шлакопортландцемент при твердении обычно отличается равномерным изменением объема. Даже при использовании клинкеров с повышенным коэффициентом насыщения, содержащих до 3,5 % СаО и поэтому непригодных для получения портландцемента, СаО свободный в шлакопортландцементе связывается шлаком и не вызывает неравномерности изменения объема. Шлакопортландцемент менее чувствителен и к повышенным добавкам гипса.
Тепловыделение при твердении шлакопортландцемента меньше, чем у портландцемента, причем тем меньше, чем больше в нем шлака, и тем значительнее, чем выше его удельная поверхность. Тепловыделение быстротвердеющего шлакопортландцемента примерно такое же, как и портландцемента.
Усадка и набухание шлакопортландцемента при одинаковой тонкости помола характеризуются приблизительно такими же показателями, что и усадка и набухание обычного портландцемента. С увеличением содержания в клинкере C2S и повышением тонкости помола усадка и набухание шлакопортлаидцемента, как и портландцемента, возрастают.
Быстротвердеющий шлакопортландцемент вследствие высокой удельной поверхности обладает повышенной усадкой, достигающей через 3 мес 0,6—0,7 мм/м (у образцов из пластичного раствора 1:3). Поэтому его не следует применять в тех областях строительства, где предъявляются особые требования к значению усадочных деформаций, например при устройстве дорожных покрытий, в условиях сухого и жаркого климата. По интенсивности миграции влаги бетоны на шлакопортлаидцемен-тах и портландцементах практически равноценны.
Жаростойкость шлакопортлаидцемента значительно превосходит жаростойкость портландцемента. Шлакопортландцемент способен без снижения прочности выдерживать длительное воздействие высоких температур (600—800°С). Это объясняется, главным образом, пониженным содержанием свободного Са(ОН)2.
Стойкость шлакопортландцементов при воздействии мягких и сульфатных вод выше, чем портландцементов. В частности, против сульфатной агрессии более стойки шлакопортландцементы с пониженным количеством клинкера, содержащие кислые малоалюминатные шлаки с повышенным (до 8—10 %) количеством MgO. Вместе с тем необходимо отметить, что шлакопортландцементы такого состава часто характеризуются невысокой активностью.
Повышенная стойкость шлакопортландцементов в мягких водах объясняется образованием при их твердении цементирующих новообразований пониженной основности и незначительным содержанием в цементном камне гидроксида кальция. В связи с этим для частей сооружений, постоянно находящихся в воде, в частности речной, предпочтительнее шлаковые портландцементы, а не обычный портландцемент.
Значительное снижение концентрации гидроксида кальция в жидкой фазе твердеющего шлакопортландцемента уменьшает возможность образования трехсульфатной формы гидросульфоалюмината кальция (эттрингита) при проникании сульфатных вод. Поэтому в затвердевшем цементном камне не возникают вредные объемные деформации, нарушающие его структуру. Этим объясняется более высокая стойкость шлакопортландцементных бетонов в минерализованных сульфатных водах по сравнению со стойкостью бетонов на портландцементе. В кислых и углекислых водах, где степень разрушения цементного камня мало зависит от содержания в нем Са (ОН)2, стойкость шлакопортландцемента примерно такая же, как и портландцемента.