Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-14, 16.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
462.63 Кб
Скачать
  1. Бесконечно большие, бесконечно малые функции и их свойства. Бесконечно малая величина

Последовательность называется бесконечно малой, если . Например, последовательность чисел  — бесконечно малая.

Функция называется бесконечно малой в окрестности точки , если .

Функция называется бесконечно малой на бесконечности, если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то , .

Бесконечно большая величина

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция , неограниченная с обеих сторон, не является бесконечно большой при .

Последовательность называется бесконечно большой, если .

Функция называется бесконечно большой в окрестности точки , если .

Функция называется бесконечно большой на бесконечности, если либо .

Свойства бесконечно малых

  • Сумма конечного числа бесконечно малых — бесконечно малая.

  • Произведение бесконечно малых — бесконечно малая.

  • Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.

  • Если  — бесконечно малая последовательность, сохраняющая знак, то — бесконечно большая последовательность.

Сравнение бесконечно малых Определения

Допустим, у нас есть бесконечно малые при одном и том же величины и (либо, что не важно для определения, бесконечно малые последовательности).

  • Если , то  — бесконечно малая высшего порядка малости, чем . Обозначают .

  • Если , то  — бесконечно малая низшего порядка малости, чем . Соответственно .

  • Если (предел конечен и не равен 0), то и являются бесконечно малыми величинами одного порядка малости.

Это обозначается как или (в силу симметричности данного отношения).

  • Если (предел конечен и не равен 0), то бесконечно малая величина имеет -й порядок малости относительно бесконечно малой .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

Примеры сравнения

  • При величина имеет высший порядок малости относительно , так как . С другой стороны, имеет низший порядок малости относительно , так как .

С использованием О-символики полученные результаты могут быть записаны в следующем виде .

  • то есть при функции и являются бесконечно малыми величинами одного порядка.

В данном случае справедливы записи и

  • При бесконечно малая величина имеет третий порядок малости относительно , поскольку , бесконечно малая  — второй порядок, бесконечно малая  — порядок 0,5.

  1. Основные теоремы о пределах.

Основные теоремы о пределах

 

Теорема 1. (о предельном переходе в равенстве) Если две функции принимают одинаковые значения в окрестности некоторой точки, то их пределы в этой точке совпадают.

Þ .

Теорема 2. (о предельном переходе в неравенстве) Если значения функции f(x) в окрестности некоторой точки не превосходят соответствующих значений функции g(x) , то предел функции f(x) в этой точке не превосходит предела функции g(x).

Þ .

Теорема 3. Предел постоянной равен самой постоянной.

.

Доказательство. f(x)=с, докажем, что .

Возьмем произвольное e>0. В качестве d можно взять любое

положительное число. Тогда при

.

Теорема 4. Функция не может иметь двух различных пределов в

одной точке.

Доказательство. Предположим противное. Пусть

и .

По теореме о связи предела и бесконечно малой функции:

f(x)-A= - б.м. при ,

f(x)-B= - б.м. при .

Вычитая эти равенства, получим:

B-A= - .

Переходя к пределам в обеих частях равенства при , имеем:

B-A=0, т.е. B=A. Получаем противоречие, доказывающее теорему.

Теорема 5. Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.

.

Доказательство. Пусть , , .

Тогда, по теореме о связи предела и б. функции:

где - б.м. при .

Сложим алгебраически эти равенства:

f(x)+g(x)-h(x)-(А+В-С)= ,

где б.м. при .

По теореме о связи предела и б.м. функции:

А+В-С= .

Теорема 6. Если каждый из сомножителей произведения конечного числа функций имеет предел при , то и произведение имеет предел при , причем предел произведения равен произведению пределов.

.

Следствие. Постоянный множитель можно выносить за знак предела.

.

Теорема 7. Если функции f(x) и g(x) имеют предел при ,

причем , то и их частное имеет предел при , причем предел частного равен частному пределов.

, .

  1. Определение производной функции.

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.

  1. Геометрический и физический смысл первой производной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]