
- •Глава 9. Репликация дн к и хромосом 32
- •Репликация. Особенности репликации хромосом эукариот.
- •Основные этапы и ферменты трансляции. Особенности процесса у эукариот.
- •Основные типы репарации (классификация). Фотореактивация. Эксцизионная репарация: этапы и ферменты. Пострепликативная и индуцибельная репарация. Характеристика заболеваний с нарушением репарации днк.
- •Фотореактивация
- •Репарация днк за счет экзонуклеазной активности днк-полимераз
- •Рекомбинационная репарация
Фотореактивация
В 1949 г. А. Кельнер и в 1950 г. Р. Дульбекко установили, что жизнеспособность акти- номицетов и бактерий, подвергнутых УФ-облучению в летальных дозах, восстанавливается, если затем воздействовать на них видимым светом. Явление было названо фотореактавацией. Эффективность ее зависит от уровня pH, температуры и физиологического состояния клетки. Восстановительный эффект при фотореактивации (рис. 10.1, а) связан с действием фермента —дезоксирибозидпиримидинфотолиазы, представляющего собой полипептид, ассоциированный для его активности с небольшой молекулой РНК (10-15 нуклеотидов). Этот фермент расщепляет димеры двух соседних пиримидинов циклобутанового типа в одной цепи ДНК, образующиеся под влиянием УФ-лучей, действие которых подробнее рассмотрено в гл. 14. Каждый из димеров задерживает репликацию примерно на 10 секунд. Фермент присоединяется к ним и в темноте, и на свету, но реакция расщепления связей, объединяющих две молекулы пиримидинов, энергетически зависит от действия видимого света с большей длиной волны. На свету пиримидиновые димеры расщепляются, за счет разрыва ковалентных связей происходит мономеризация и таким образом восстанавливается нативная структура ДНК. К эффективному диапазону (365-490 нм) относятся наиболее длинноволновые УФ-лучи (365-390 нм) и примыкающие к ним видимые синие лучи (435—495 нм). Наибольшая эффективность фото реактивации отмечена для голубой часта видимого спектра. Если же необходимо исключить возможность реактивации, то опыты следует проводить в более длинноволновой части спектра, начиная с желтого света (570—590 нм).
За 1 минуту молекула фотолиазы может расщепить 2,4 димера. У Е. coli система фотореактивации удаляет до 90% пиримидиновых димеров и контролируется одним геном - phr. Штаммы, несущие мутацию по этому гену не способны к репарации ДНК.
Фотореактивации подвергаются только циклобутановые димеры. Надо отметить, что это пока почти единственная, известная ферментная реакция, в которой фактором активации служит не химическая энергия, а энергия видимого света. Дезокси- рибозидпиримидинфотолиаза широко распространена у разных органических форм и представлена даже у таких примитивных микроорганизмов, как микоплазмы. Она есть у всех изученных бактерий, кроме Micrococcus radiodurans, которые чрезвычайно устойчивы кдействию УФ-лучей и выдерживают дозы в 1 ООО раз более высокие, чем те, что детальны для Е.соЧ. Фотолиаза обнаружена в клетках многих растений и животных, в том числе и у человека. По-видимому, наибольшее значение фотореактивация имеет у растений
Репарация днк за счет экзонуклеазной активности днк-полимераз
Установлено, что большинство бактериальных полимераз кроме 5'-3'-полимеразной активности имеют 3'-5'-экзонуклеазную активность, благодаря которой обеспечивается коррекция возможных ошибок. Причем эта коррекция осуществляется в два этапа: сначала идет проверка соответствия каждого нуклеотида матрице перед включением его в состав растущей цепи, а затем — перед включением в цепь следующего за ним нуклеотида. При встраивании неправильного нуклеотида двойная спираль деформируется. Эго позволяет ДН К-полимеразе распознать в большинстве случаев дефект в растущей цепи. Если ошибочно встроенный нуклеотид не способен формировать водородную связь с комплементарным основанием, полимераза приостановит процесс репликации до тех пор, пока нужный нуклеотид не встанет на его место. У Е. соЧ обнаружен ген mutD, мутация которого изменяет е-субъединицу ДН К-полимеразы III, результатом чего является нарушение генетической репарации неправильно встроенных нуклеотидов, что в конечном итоге приводит к возникновению мутаций в других генах
ЭКСЦИЗИОННАЯ РЕПАРАЦИЯ ДНК
Существуют системы генетической репарации, работа которых напоминает «хирургическое» вмешательство в структуру ДНК: поврежденные участки вырезаются из цепи ДНК, отсюда происходит и термин «эксцизионная репарация» (англ. excision — вырезание). Сам феномен известен еще с 1955 г., однако, молекулярный механизм эксцизионной репарации был раскрыт гораздо позже — в 1964 г., в результате работ нескольких групп исследователей на линиях мутантных бактерий, чувствительных к действию радиации. Оказалось, что данный тип генетической репарации обеспечивает вырезание неверного или поврежденного нуклеотида/участка ДНК, последующую синтез застройку бреши и лигирование. К этому типу относится несколько специализированных механизмов, например, гликозилазы удаляют лишь модифицированные основания, АР-эндонуклеазы — апуриновые сайты, и тл. По-видимому, именно системы эксцизионной репарации восстанавливают большую часть повреждений ДНК в клетке.
Общая схема эксцизионной репарации, действующей по принципу «режь-ла- тай», включает несколько этапов (см. рис. 10.1, б):
Узнавание повреждения УФ-эндонуклеазой (у E.coli этот фермент называют UvrABC-эндонуклеазой);
В случае пиримидиновых димеров или моноаддуктов повреждение распознается легко. В других случаях, например, при неправильном спаривании нуклеотидов, оба нуклеотида (правильный и неверный) эквивалентны для многих видов эксцизионной репарации, однако существуют специализированные системы, позволяющие в большинстве случаев восстанавливать нативную структуру.
Инцизия (надрезание) цепи ДНК этим ферментом по обе стороны от повреждения;
Эксцизия (вырезание и удаление) фрагмента ДНК, содержащего повреждение, происходит при участии геликазы — фермента, расплетающего молекулу ДНК для высвобождения концов после первичных надрезов;
Ресинтез, в ходе которого ДНК-полимераза I застраивает образовавшуюся брешь благодаря своей 5'-3'-полимеразной активности, а ДНК-лигаза ковалентно присоединяет З'-конец вновь синтезированного материала к ранее синтезированной ДНК.
Эксцизионная репарация ДНК завершается при возникновении ковалентных связей репарированного участка со скелетом полинуклеотида. Таким образом, обеспечивается непрерывность в ранее поврежденной цепи двухцепочечной молекулы ДНК. В целом, эксцизионная репарация обычно распознает нарушения вторичной структуры ДНК (двойной спирали) и вырезает их.
У Е. coli выделяют три вида эксцизионной репарации, различающихся по длине вырезаемых фрагментов поврежденной ДНК (короткие, длинные и очень короткие).
Эксцизионная репарация коротких фрагментов является конститутивной и контролируются системой Hvr-генов (А, В, С, D). Размер вырезаемого фрагмента цепи ДНК составляет около 20 оснований. Комплекс UvrAB распознает повреждение (пиримидиновый димер, моноаддукт), затем UvrA отсоединяется, a UvrC присоединяется, новый комплекс осуществляет разрез на 7 нуклеотидов в 5'-сторону от повреждения и 3-4 нуклеотида в другую. UvrD продуцирует геликазу, которая раскручивает ДНК для высвобождения концов цепей. Этап эксцизии обычно осуществляется ДНК-полимеразой I, которая помимо полимеразной имеет и экзонуклеазную активность. Этот фермент, как правило, застраивает короткие участки (до 30 нуклеотидов). Д Н К-полимераза 11 способна вырезать и застраивать более длинные бреши (до 1 000-1 500 нуклеотидов). Такие же функции присущи экзонуклеазе VII. Таким образом, отдельные этапы могут выполняться различными ферментами, что повышает надежность системы. Данный тип репарации ДНК удаляет примерно 99% моноаддуктов.
Эксцизионная репарация длинных повреждений контролируется той же системой генов, однако, является индуцибельной. Размеры вырезаемых фрагментов в отдельных случаях могут превышать и 9 000 нуклеотидов.
К специализированным системам эксцизионной репарации ДН К можно отнести эксцизионную репарацию очень коротких фрагментов. Она специфически удаляет Т в парах GT и СТ, используя продукты генов mutL и mutS. Другая система подобного рода, основанная на работе гена muiY, кодирующего аденингликозилазу, вырезает А в парах AG и АС. Эти системы могут работать очень успешно вскоре после синтеза ДНК.
ИСПРАВЛЕНИЕ ОШИБОК СПАРИВАНИЯ (МИСМЭТЧ-РЕПАРАЦИЯ)
Мисмэтч-репарация исправляет ошибки, возникающие в результате нарушения комплементарности пар АТ или GC в дочерней цепи при включении в них некомплементарных нуклеотидов. Особенность данного механизма, состоит в том, что он способен отличить «старую» цепь ДНК от «новой» и исправить именно вновь синтезированную. В основе данного феномена лежит то важное свойство, что материнская цепь несет в последовательностях GATC аденины с присоединенными к ним сразу после окончания репликации метальными группами. Вследствие этого во время следующего цикла репликации материнская и дочерняя цепи становятся структурно различимыми, так как до окончания данного цикла дочерняя цепь остается неметилированной. Именно в этот временной промежуток и должны быть исправлены ошибки спаривания оснований. Генетическая репарация неспаренных оснований обнаружена в клетках и человека, и дрожжей. Механизм коррекции ошибок такого типа, базирующийся на сочетанном действии продуктов четырех генов mut (Н, L, 5 и (/) и получивший название «система MutHSLU», достаточно хорошо изучен у Е. coli. Такое взаимодействие протекает в несколько этапов, на первом из которых к паре некомплементарных оснований присоединяется MutS — белковый продукт гена mutS, распознающего нарушения такого типа (рис. 10.2). Соединившись с участком, включающим неправильное основание, этот белок сразу же образует комплекс и с продуктом гена mutL. Сформированный трехчленный комплекс активирует продукт гена mutН (до этого момента находившийся в латентном состоянии) д ля связывания с ближайшей неметилированной последовательностью GATC. Обладающий эндонуклеазной активностью продукт гена mutH может разрезать дочернюю цепь как с 5'-, так и с З'-стороны от аденина. В первом случае к белку MutH присоединится экзонуклеаза, которая разрушит дочернюю цепь в направлении 5'-3' до места неверного спаривания и несколько дальше. А во втором — другая экзонуклеаза, с 3'-5'-ак- тивностью, двигаясь по дочерней цепи ДНК, также разрушит ее ошибочный фрагмент. Дальнейший ход событий аналогичен описанным этапам ресинтеза и лигиро- вания концов в ходе эксцизионной репарации. Механизм коррекции, при котором восстановлению подвергается определенная цепь ДНК, называется направленным.
Эксцизионная репарация обнаружена как у простейших, так и в культуре клеток млекопитающих. В частности в культуре клеток здоровых людей после облучения ее ультрафиолетом через 20 ч из ДНК исчезает до 90% тиминовых димеров (со скоростью около 40 ООО димеров в час).
ПОСТРЕПЛИКАТИВНАЯ РЕПАРАЦИЯ ДНК
Пострепликативная репарация осуществляется в тех случаях, когда повреждение доживает до фазы репликации (слишком много повреждений, или повреждение возникло непосредственно перед репликацией) или имеет такую природу, которая делает невозможным его исправление с помощью эксцизионной репарации (например, сшивка цепей ДНК). Важная характеристика пострепликативной системы репарации - точность синтеза ДН К, не уступающая той, что наблюдается при обычной репликации.
Эта система играет особенно важную роль у эукариот, обеспечивая возможность копирования даже с поврежденной матрицы (хотя и с увеличенным количеством ошибок). Одна из разновидностей этого типа репарации ДН К — рекомбинационная репарация.