
- •Резонанс токов.
- •2.Двигатели постоянного тока. Параметры и характеристики.
- •3. Комплексный (символический) метод расчета цепей синусоидального тока Все параметры цепи представляются в комплексной форме.
- •4.Асинхронные двигатели. Основные параметры и характеристики.
- •5.Применение законов Ома, Кирхгофа для расчета электрических цепей переменного тока.
- •6.Переходные процессы в электрических цепях. Основные законы коммутации.
- •7.Трехфазные цепи, особенности соединений по схеме «звезда» и «треугольник»
- •8.Резонанс напряжений.
- •9.Расчет сложных электрических цепей методом наложения и методом узлового напряжения.
- •11.Двигатели постоянного тока с последовательным и параллельным возбуждением.
- •12.Трансформаторы, холостой ход и нагрузочный режим. Опыт короткого замыкания.
- •13.Разветвленные цепи переменного тока. Параллельное включение rl и rc цепей.
- •14.Синхронные двигатели. Параметры и характеристики. Особенности параллельной работы.
- •15.Расчет цепей постоянного тока при последовательном и параллельном включении источников и приемников энергии.
- •16.Переходные процессы при включении rc-цепи к постоянному напряжению.
- •17.Заземление в цепях трехфазного тока
- •18.Переходные процессы в цепях с индуктивностью: размыкание цепи с индуктивностью; включение rl цепи на постоянное напряжение.
- •19.Смешанная rl и rc нагрузка в цепях переменного тока
- •20.Общий случай последовательного включения активных и реактивных сопротивлений.
- •21.Генераторы постоянного тока. Параметры и характеристики.
- •22.Индуктивная нагрузка с ферромагнитным сердечником и без него.
- •23.Переходные процессы в цепях с конденсатором. Включение rc цепи к источнику постоянного напряжения.
- •24.Законы Ома, Кирхгофа и их применение для расчета электрических цепей.
- •25.Основные типы электрических измерительных механизмов.
- •26.Активная, емкостная и индуктивная нагрузка в цепях переменного тока.
- •27.Расчет сложных электрических цепей методом контурных токов.
- •28.Векторные диаграммы и их применение для расчета цепей переменного тока.
8.Резонанс напряжений.
Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.
В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Однако полная аналогия - равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) — возможна не во всех случаях.
В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление. Такое состояние цепи имеет место при определенном соотношении ее параметров r, L, С, когда резонансная частота цепи равна частоте приложенного к ней напряжения.
Резонанс в электрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.
При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных ее участках. В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,— резонанс токов.
9.Расчет сложных электрических цепей методом наложения и методом узлового напряжения.
Метод узлового напряжения
Этот метод рекомендуется использовать в том случае, если сложную электрическую схему можно упростить, заменяя последовательно и параллельно соединенные резисторы эквивалентными, используя при необходимости преобразование треугольника сопротивлений в эквивалентную звезду. Пренебрегая сопротивлением проводов, соединяющих ветви цепи, в ее схеме можно выделить два узла: a и b. В зависимости от значений и направлений ЭДС и напряжений, а также значений сопротивлений ветвей между узловыми точками a и b установится определенное узловое напряжение Uab. Предположим, что оно направлено так, как показано на рис. 1.27, и известно. Зная напряжение Uab легко найти токи во всех ветвях.
Выберем
положительные направления токов и
обозначим их на схеме. Запишем уравнения
по второму закону Кирхгофа для контуров
(1.4), проходящих по первой и второй ветви,
содержащих источники ЭДС, совершая
обход контуров по часовой стрелке.Первая
ветвь: E1=I1(r01+R1)+Uab.
Вторая ветвь: −E2=−I2(r02+R2)+Uab. Определим значения токов, возникающих в первой и второй ветвях,
Запишем уравнения по второму закону Кирхгофа для ветвей, содержащих источники напряжений, совершая обход контуров также по часовой стрелке.
Третья ветвь: Uab−U1+I3R3=0.
Четвертая ветвь: Uab+U2−I4R4=0.
Определим значения токов, возникающих в третьей и четвертой ветвях,
,
(1.23)
,
где:
;
–
проводимости соответственно третьей
и четвертой ветвей.