- •Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)
- •Конспект лекций физическая химия
- •Физическая химия
- •Термодинамика Введение Историческая справка
- •Задачи термодинамики
- •Понятия и определения
- •Внутренняя энергия системы
- •Теплота и работа
- •Первый закон термодинамики
- •Применение первого закона термодинамики к процессам в идеальных газах
- •Теплоемкость
- •Приближенные правила расчета теплоемкости
- •Зависимость теплоемкости от температуры
- •Теории теплоемкости Классическая кинетическая теория
- •Теория теплоемкости Эйнштейна-Дебая (квантовая теория) для твердого вещества 1907 г
- •Усовершенствования в теорию Эйнштейна внес Дебай
- •Квантовостатистическая теория газов
- •Тепловые эффекты химических реакций Закон Гесса. Вычисление теплового эффекта химической реакции при обычных условиях
- •Вычисление теплового эффекта методом алгебраического суммирования термохимических уравнений
- •Вычисление теплового эффекта графическим методом (методом термохимических схем)
- •Вычисление теплового эффекта по стандартным энтальпиям образования
- •Вычисление теплового эффекта реакций в водных растворах по стандартным энтальпиям образования
- •Вычисление теплового эффекта по стандартным энтальпиям сгорания
- •Вычисления общего количества теплоты, необходимого для нагревания вещества
- •Зависимость теплового эффекта реакции от температуры
- •Второй закон термодинамики. Энтропия
- •Определение энтропии по Больцману (термодинамическая вероятность)
- •Изменение энтропии в некоторых процессах
- •Изменение энтропии при фазовых превращениях
- •Изменение энтропии при изотермическом расширении (сжатии) 1 моль идеального газа
- •Изменение энтропии при нагревании системы
- •Изменение энтропии при кристаллизации переохлажденной жидкости
- •Изменение энтропии химической реакции
- •Изменение энтропии идеального газа
- •Термодинамические потенциалы
- •Характеристические функции
- •Уравнения Гиббса-Гельмгольца
- •Третий закон термодинамики
- •Парциальные молярные величины
- •Уравнения Гиббса-Дюгема
- •Следствия из уравнений Гиббса-Дюгема
- •Относительные пм свойства
- •Кажущиеся молярные величины
- •Методы определения парциальных молярных величин
- •Химический потенциал
- •Зависимость химического потенциала от температуры
- •Химический потенциал в газах
- •Химический потенциал в растворах
- •Химическое равновесие Константа равновесия. Закон действующих масс
- •Использование закона действующих масс для расчета состава равновесной газовой смеси
- •Уравнение изотермы химической реакции (влияние состава на равновесие)
- •Принцип Ле-Шателье и влияние различных факторов на химическое равновесие
- •Уравнение изобары химической реакции
- •Метод приведенных энергий Гиббса Метод Темкина-Шварцмана Равновесие в гетерогенной системе
- •Условие равновесия в гетерогенной системе
- •Константа равновесия гетерогенной системы
- •Фазовые равновесия Основные понятия и определения
- •Правило фаз Гиббса
- •Уравнение Клаузиуса-Клапейрона
- •Применение уравнения Клаузиуса-Клапейрона к различным процессам
- •Равновесия с участием растворов
- •Термодинамические условия образования растворов
- •Закон Рауля
- •Растворимость газов
- •Растворимость твердых веществ. Уравнение Шредера
- •Зависимость растворимости твердых веществ от давления
- •Температура кипения раствора
- •Температура замерзания раствора
- •Осмотическое давление
- •Фазовые диаграммы Однокомпонентные системы
- •Двухкомпонентные системы
- •Двухкомпонентные неконденсированные системы
- •Двухкомпонентные конденсированные системы Построение диаграмм
- •Типовые диаграммы состояния конденсированных систем
- •Трехкомпонентные конденсированные системы
- •Треугольник Гиббса
- •Метод Розебума
- •Правило луча
- •Сечения объемной диаграммы
- •Проекция нескольких сечений
- •Диаграмма состояния трехкомпонентной конденсированной системы без химических соединений и фазовых превращений
- •Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся без разложения
- •Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся с разложением
- •Компоненты системы образуют одно тройное химическое соединение s с конгруэнтной точкой плавления.
- •Водно-солевые системы
- •Диаграмма состояния трехкомпонентной водно-солевой системы без кристаллогидратов и двойных солей
- •Диаграмма растворимости двух солей с одноименным ионом в случае образования двойной соли
- •Кристаллизация соли ах сопровождается связыванием определенного количества кристаллизационной воды с образованием кристаллогидрата
- •Кристаллизация соли ах сопровождается появлением двойной соли с образованием кристаллогидрата этой двойной соли
- •Электрохимия Введение
- •Историческая справка о науке электрохимии
- •Растворы электролитов Основные понятия и определения
- •Историческая справка о природе растворов электролитов
- •О сольватации и ассоциации Ассоциация
- •Сольватация
- •Термохимическая теория растворения электролитов
- •Теория гидратации Борна
- •Метод активностей
- •Теория Дебая-Хюккеля
- •Электрическая проводимость растворов Введение
- •Зависимость электропроводности от температуры
- •Движение ионов в электрическом поле. Числа переноса ионов
- •Зависимость удельной электрической проводимости растворов электролитов от концентрации
- •Метод кондуктометрии
- •Термодинамика электродных систем Введение
- •Закон Фарадея
- •Электроды, цепи, их схематическая запись
- •Правила записи электродов и цепей
- •Возникновение скачка потенциала на границе раствор-металл
- •Двойной электрический слой
- •Потенциал нулевого заряда
- •Стандартные потенциалы
- •Уравнение Нернста и направление протекания овр (термодинамика обратимых электрохимических систем)
- •Типы электродов
- •Электрохимические цепи
- •Химические цепи
- •Работа аккумулятора
- •Концентрационные цепи
- •Коррозия
- •Химическая кинетика Введение
- •Основные понятия и определения
- •Зависимость скорости реакции от концентрации реагирующих веществ. Закон действующих масс
- •Порядок реакции
- •Принцип независимости протекания химических реакций
- •Кинетика закрытых систем Простые реакции Односторонняя реакция первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Сложные реакции
- •Двусторонние (обратимые) реакции
- •Параллельные реакции первого порядка
- •Последовательные реакции первого порядка
- •Сопряженные реакции
- •Автокаталитические реакции
- •Цепные химические реакции
- •Вероятностная теория цепных реакций
- •Горение и взрыв
- •Цепной взрыв или воспламенение
- •Тепловой взрыв
- •Формальная кинетика открытых систем. Приближение формально простых и элементарных процессов
- •Модель реактора идеального смешения
- •Модель реактора идеального вытеснения
- •Влияние температуры на скорость реакции Правило Вант-Гоффа
- •Уравнение Аррениуса
- •Теоретические основы расчета констант скорости химической реакции Теория активных столкновений
- •Теория активированного комплекса
- •О поверхности потенциальной энергии элементарного химического акта
- •О расчете скоростей элементарных реакций
- •Константа скорости реакции и термодинамические параметры активированного комплекса
- •Кинетика гетерогенных процессов
- •Уравнения Фика
- •Нестационарная диффузия Модель нестационарной линейной полубесконечной диффузии
- •Модель нестационарной сферической полубесконечной диффузии
- •Стационарная конвективная диффузия
- •Определение лимитирующей стадии (реакция или диффузия?)
- •Электролиз
- •Порядок восстановления катионов
- •Порядок окисления анионов
- •Кинетика электродных процессов (поляризация и перенапряжение)
- •Электродная поляризация
- •Диффузионное перенапряжение. Уравнение Нернста-Бруннера
- •Электрохимическое перенапряжение
- •Перенапряжение при электролитическом выделении водорода
- •Катализ
- •Основные принципы каталитического действия
- •Слитно или раздельно?
- •Кинетические уравнения каталитических реакций
- •Энергия активации каталитических реакций
- •Соотношение между эффективной и истинной энергиями активации
- •Специфичность катализа
- •Активность и селективность катализатора
- •Гомогенный катализ
- •Кислотно-основной катализ
- •Общий кислотно-основной катализ
- •Специфический кислотно-основной катализ
- •Гетерогенный катализ Общие слова
- •Виды гетерогенных катализаторов
- •Старение и отравление катализаторов
- •Основные стадии гетерогенно-каталитического процесса
- •Закон действующих поверхностей
- •Уравнения адсорбции
- •Основные кинетические уравнения гетерогенного катализа
- •Примеры типовых схем
- •Мультиплетная теория гетерогенного катализа (а.А.Баландин)
- •Содержание
Сечения объемной диаграммы
Пример сечения объемной диаграммы показан на рис. Заштрихованные области у углов треугольника показывают кристаллизацию компонентов А, В и С соответственно. Линии полей диаграммы соответствуют поверхности раздела фаз. Незаштрихованная область – одна фаза, в данном случае – жидкая.
Для всех многокомпонентных диаграмм: в поле диаграммы первым кристаллизуется то вещество или компонент системы, содержание которого больше («хозяин поля»).
Применение правила рычага для трехкомпонентных систем
Выбрать точку на диаграмме.
От «хозяина поля» провести ноду или луч через заданную точку.
Точка пересечения с линией поля диаграммы покажет состав жидкой фазы. Пока идет кристаллизация «хозяина поля» соотношение концентраций двух других компонентов будет оставаться величиной постоянной.
Правило рычага:
Применение правила рычага
;
.
При продолжении процесса кристаллизации компонентов А и В сечение диаграммы будет иметь вид показанный на следующем рисунке:
Точка Е представляет двойную эвтектику для компонентов А и В. В такой ситуации вещества А и В кристаллизуются совместно, а вещество С – отдельно.
Здесь показаны две жидких фазы различного состава. В поле AKB жидкая фаза состава K находится в равновесии с кристаллами компонентов А и В. На линии AK кристаллы компонента А находятся в равновесии с жидкостью состава K. На линии ВK кристаллы компонента В находятся в равновесии с жидкостью состава K. Применение правила рычага позволяет определить относительное содержание жидкой фазы и кристаллов компонентов А и В. В данном случае луч или ноду через заданную фигуративную точку следует проводить от точки K.
;
;
;
Данная диаграмма является продолжением предыдущей и показывает развитие процесса кристаллизации.
На рисунке показано образование тройной эвтектики и окончательная кристаллизация системы.
Проекция нескольких сечений
Проекцию объемной диаграммы делают на плоскость основания призмы, т.е. на плоскость концентрационного треугольника, с помощью которого определяется состав системы. При этом в его вершины проектируются все точки, соответствующие фазовым превращениям индивидуальных компонентов, например, точки плавления, численные значения которых указываются при вершинах.
На стороны треугольника проектируются все геометрические элементы бинарных систем, расположенных на гранях призмы (линии ликвидус, солидус, точки, отвечающие составу химических соединений, точки двойных эвтектик и перитектик и т.д.). На этих линиях стрелками указывают направление падения температуры, а числами – температуры, отвечающие точкам двойных эвтектик.
На внутреннюю плоскость треугольника проектируются все геометрические элементы диаграммы состояния трехкомпонентной системы: поверхности ликвидус, линии их пересечения (линии двойных эвтектик, реакционные линии), тройные химические соединения, точки тройных эвтектик и перитектик и т.д.
На проекциях всех линий стрелками также указывают направление падения температуры, а числами – температуры, соответствующие точкам безвариантных равновесий в системе и точкам плавления химических соединений.
Для изображения на плоскости температурного рельефа диаграммы используется метод, аналогичный применяемому в топографии для изображения рельефа местности на картах. C этой целью выполняют сечения объемной диаграммы изотермическими плоскостями, параллельными плоскости основания призмы, а затем на плоскость основания проектируют линии пересечения – изотермы, указывая на каждой из них соответствующую ей температуру.
Плоская диаграмма позволяет определять многие свойства системы с заданным сочетанием трех компонентов и изменение этих свойств при изменении исходного состава системы и температуры. С ее помощью можно определить, какова растворимость компонентов в жидком и твердом состоянии, образуются ли между ними химические соединения, меняются ли кристаллические модификации твердых фаз, как меняется состав и относительное количество фаз при изменении температуры, каков состав самой тугоплавкой или легкоплавкой системы, можно воссоздать вид кривой охлаждения системы заданного исходного, состава и т.д.
Разумеется, многообразие сочетаний различных свойств в трехкомпонентных системах создает значительно большие трудности при построении и чтении диаграмм их состояния по сравнению с бинарными системами, поэтому здесь рассмотрены типовые диаграммы или диаграммы состояния простейших реальных систем.
