- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
Наряду с понятием случайного события в теории вероятности используется и более удобное понятие случайной величины.
Случайной величиной называется величина, принимающая в результате опыта одно из своих возможных значений, причем заранее неизвестно, какое именно.
Будем обозначать случайные величины заглавными буквами латинского алфавита (Х, Y,Z,…), а их возможные значения — соответствующими малыми буквами (xi, yi,…).
Примеры: число очков, выпавших при броске игральной кости; число появлений герба при 10 бросках монеты; число выстрелов до первого попадания в цель; расстояние от центра мишени до пробоины при попадании.
Можно заметить, что множество возможных значений для перечисленных случайных величин имеет разный вид: для первых двух величин оно конечно ( соответственно 6 и 11 значений), для третьей величины множество значений бесконечно и представляет собой множество натуральных чисел, а для четвертой — все точки отрезка, длина которого равна радиусу мишени. Таким образом, для первых трех величин множество значений из отдельных (дискретных), изолированных друг от друга значений, а для четвертой оно представляет собой непрерывную область. По этому показателю случайные величины подразделяются на две группы: дискретные и непрерывные.
5
|
|
