- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
Сущность мнк
Пусть задана некоторая (параметрическая) модель вероятностной (регрессионной) зависимости между (объясняемой) переменной y и множеством факторов (объясняющих переменных) x
где
—
вектор неизвестных параметров модели
—
случайная ошибка модели.
Пусть также имеются выборочные
наблюдения значений указанных переменных.
Пусть
—
номер наблюдения (
).
Тогда
—
значения переменных в
-м
наблюдении. Тогда при заданных значениях
параметров b можно рассчитать теоретические
(модельные) значения объясняемой
переменной y:
Тогда можно рассчитать остатки регрессионной модели — разницу между наблюдаемыми значениями объясняемой переменной и теоретическими (модельными, оцененными):
Величина остатков зависит от значений параметров b.
Сущность МНК (обычного,
классического) заключается в том, чтобы
найти такие параметры b, при которых
сумма квадратов остатков
(англ. Residual
Sum of Squares[1])
будет минимальной:
где:
В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS — англ. Non-Linear Least Squares). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции , продифференцировав её по неизвестным параметрам b, приравняв производные к нулю и решив полученную систему уравнений:
Если случайные ошибки модели имеют нормальное распределение, имеют одинаковую дисперсию и некоррелированы между собой, МНК-оценки параметров совпадают с оценками метода максимального правдоподобия (ММП).
Мнк в случае линейной модели
Пусть регрессионная зависимость является линейной:
Пусть y — вектор-столбец
наблюдений объясняемой переменной, а
—
матрица наблюдений факторов (строки
матрицы — векторы значений факторов
в данном наблюдении, по столбцам —
вектор значений данного фактора во всех
наблюдениях). Матричное
представление линейной модели
имеет вид:
Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны
соответственно сумма квадратов остатков регрессии будет равна
Дифференцируя эту функцию по вектору параметров и приравняв производные к нулю, получим систему уравнений (в матричной форме):
.
Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:
Для аналитических целей оказывается полезным последнее представление этой формулы. Если в регрессионной модели данные центрированы, то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая — вектор ковариаций факторов с зависимой переменной. Если кроме того данные ещё и нормированы на СКО (то есть в конечном итоге стандартизированы), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор — вектора выборочных корреляций факторов с зависимой переменной.
Немаловажное свойство МНК-оценок для моделей с константой — линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:
В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое, известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой — удовлетворяет критерию минимума суммы квадратов отклонений от неё.
