- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
Случайное событие
Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.
Случайное событие, которое
никогда не реализуется в результате
случайного эксперимента, называется
невозможным
и обозначается символом
.
Случайное событие, которое всегда
реализуется в результате случайного
эксперимента, называется достоверным
и обозначается символом
.
Определение
Математически случайное
событие — подмножество
пространства
элементарных исходов случайного
эксперимента; элемент алгебры
или сигма-алгебры
событий
,
которая в свою очередь задаётся
аксиоматически и вместе с пространством
элементарных событий
и
вероятностью
образует
вероятностное
пространство
.
Пример
Случайный эксперимент состоит в бросании игральной кости: пример случайного события — выпавшее число чётно; события «Выпала единица», «Выпала двойка» и т. д. — элементарные исходы эксперимента; совокупность всех событий «Выпала
2Комбинаторика
Рассмотрим некоторое множество
Х, состоящее из n элементов
.
Будем выбирать из этого множества
различные упорядоченные подмножества
из
k элементов.
Размещением из n элементов
множества Х по k элементам назовем
любой упорядоченный набор
элементов
множества Х.
Комбинато́рика (Комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и имеет широкий спектр применения в различных областях знаний (например в генетике, информатике, статистической физике).
Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».
Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.
Примеры комбинаторных конфигураций и задач
Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:
Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
Перестановкой из n элементов (например чисел 1,2,…,n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.
Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел.
Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.
Примерами комбинаторных задач являются:
Сколькими способами можно разместить n предметов по m ящикам так, чтобы выполнялись заданные ограничения?
Сколько существует функций
из
m-элементного множества в n-элементное,
удовлетворяющих заданным ограничениям?Сколько существует различных перестановок из 52 игральных карт?
Ответ: 52! (52 факториал), то есть, 80658175170943878571660636856403766975289505440883277824000000000000 или примерно 8,0658 × 1067.
При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, таких, что сумма очков на верхних гранях равна двенадцати?
Решение: Каждый возможный исход
соответствует функции
(аргумент
функции — это номер кости, значение —
очки на верхней грани). Очевидно, что
лишь 6+6 даёт нам нужный результат 12.
Таким образом существует лишь одна
функция, ставящая в соответствие 1 число
6, и 2 число 6. Или, другими словами,
существует всего одна комбинация, такая,
что сумма очков на верхних гранях равна
двенадцати.
