- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
Свойства
Если случайные величины
и
независимы
и имеют нормальное распределение с
математическими ожиданиями
и
и
дисперсиями
и
соответственно,
то
также
имеет нормальное распределение с
математическим ожиданием
и
дисперсией
.
Моделирование нормальных случайных величин
Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
Центральная предельная теорема
Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:
отклонение при стрельбе
некоторые погрешности измерений (однако, многие погрешности приборов в технике имеют сильно не нормальные распределения)
рост живых организмов
Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).
Важно понимать, что использование гауссианы допустимо только при соблюдении следующих эмпирических условий: все факторы процесса известны (нет неизвестных или они несущественны), процесс немасштабируем (существуют верхние и нижние пределы), крайние события происходят не чаще, чем предсказывает правило 3-х сигм, и не имеют больших последствий. Таким образом, с помощью гауссианы некорректно моделировать социальные и экономические процессы. Однако хорошо поддаются моделированию большинство физических процессов.[1]
Центральная предельная теорема показывает, что в случае, когда результат измерения (наблюдения) складывается под действием многих независимых причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно, то есть путём сложения, то распределение результата измерения (наблюдения) близко к нормальному.
22 Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Количество степеней свободы может быть не только натуральным, но и любым действительным числом, хотя стандартные таблицы рассчитывают p-value наиболее распространённых распределений только для натурального числа степеней свободы.
Хи-квадрат
Если случайные величины
независимы
и все имеют стандартное нормальное
распределение (
),
то тогда говорят, что случайная величина
,
являющаяся суммой квадратов стандартных
нормальных величин в количестве
штук,
имеет распределение
хи-квадрат с
степенями
свободы (
):
t-распределение Стьюдента
Если случайная величина
имеет
стандартное нормальное
распределение (
),
а случайная величина
имеет
распределение
хи-квадрат с
степенями
свободы (
),
то случайная величина
имеет
распределение
Стьюдента с
степенями
свободы (
):
