- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
Формулировки
Пусть
—
пространство
с мерой. Пусть также
—
суммируемая
на
функция
.
Тогда справедливо неравенство:
.
В более общем виде:
Если
—
неотрицательная вещественная измеримая
функция, неубывающая на области
определения
,
то
В терминах пространства :
Пусть
.
Тогда
Неравенство Чебышева может быть получено, как следствие из неравенства Маркова.
Неравенство Чебышева в теории вероятностей
Неравенство Чебышева в теории вероятностей утверждает, что случайная величина в основном принимает значения, близкие к своему среднему. Говоря более точно, оно даёт оценку вероятности, что случайная величина примет значение, далёкое от своего среднего. Неравенство Чебышева является следствием неравенства Маркова.
Формулировки
Пусть случайная величина
определена
на вероятностном
пространстве
,
а её математическое
ожидание
и
дисперсия
конечны.
Тогда
,
где
.
Если
,
где
—
стандартное отклонение и
,
то получаем
.
В частности, случайная величина
с конечной дисперсией отклоняется от
среднего больше, чем на
стандартных
отклонения, с вероятностью меньше
.
Она отклоняется от среднего на
стандартных
отклонения с вероятностью меньше
.
19
Показательное распределение |
|
Плотность
вероятности
|
|
Функция
распределения
|
|
Обозначение |
|
Параметры |
|
Носитель |
|
Плотность вероятности |
|
Функция распределения |
|
Математическое ожидание |
|
Медиана |
|
Мода |
|
Дисперсия |
|
Коэффициент асимметрии |
|
Коэффициент эксцесса |
|
Информационная энтропия |
|
Производящая функция моментов |
|
Характеристическая функция |
|
Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Определение
Случайная
величина
имеет
экспоненциальное распределение с
параметром
,
если её плотность
имеет вид
.
Пример. Пусть есть магазин,
в который время от времени заходят
покупатели. При определённых допущениях
время между появлениями двух
последовательных покупателей будет
случайной величиной с экспоненциальным
распределением. Среднее время ожидания
нового покупателя (см. ниже) равно
.
Сам параметр
тогда
может быть интерпретирован, как среднее
число новых покупателей за единицу
времени.
В этой статье для определённости
будем предполагать, что плотность
экспоненциальной случайной величины
задана
первым уравнением, и будем писать:
.
Функция распределения
Интегрируя плотность, получаем функцию экспоненциального распределения:
Моменты
Несложным интегрированием находим, что производящая функция моментов для экспоненциального распределения имеет вид:
,
откуда получаем все моменты:
.
В частности,
,
,
.
Отсутствие памяти
Пусть
.
Тогда
.
Пример. Пусть автобусы приходят на остановку случайно, но с некоторой фиксированной средней интенсивностью. Тогда количество времени, уже затраченное пассажиром на ожидание автобуса, не влияет на время, которое ему ещё придётся прождать.
Связь с другими распределениями
Минимум независимых экспоненциальных случайных величин также экспоненциальная случайная величина. Пусть независимые случайные величины, и
.
Тогда
.
Экспоненциальное распределение является частным случаем Гамма распределения:
.
Сумма независимых одинаково распределённых экспоненциальных случайных величин имеет Гамма распределение. Пусть независимые случайные величины, и
.
Тогда
.
Экспоненциальное распределение может быть получено из непрерывного равномерного распределения методом обратного преобразования. Пусть
.
Тогда
.
Экспоненциальное распределение с параметром
—
это частный случай распределения
хи-квадрат:
.
20 Математическое
ожидание непрерывной равномерно
распределённой случайной величины в
интервале
вычисляется
по следующей формуле :
Дисперсия
непрерывной равномерно распределённой
случайной величины в интервале
вычисляется
по следующей формуле :
Равномерное распределение, прямоугольное распределение, специальный вид распределения вероятностей случайной величины Х, принимающей значения из интервала (а — h, a + h); характеризуется плотностью вероятности:
.
Математическое ожидание:
Ех = a, дисперсия Dx = h2/3,
характеристическая функция:
.
С помощью линейного преобразования интервал (а — h, a + h) может быть переведён в любой заданный интервал. Так, величина Y = (X — a + h)/2h равномерно распределена на интервале (0, 1). Если Y1, Y2, ..., Yn равномерно распределены на интервале (0, 1), то закон распределения их суммы, нормированной математическим ожиданием n/2 и дисперсией n/12, при возрастании n быстро приближается к нормальному распределению (даже при n = 3 приближение часто бывает достаточным для практики).
21
Нормальное распределение |
|
Плотность
вероятности
|
|
Функция
распределения
|
|
Обозначение |
|
Параметры |
-
коэффициент
сдвига
(вещественное
число)
|
Носитель |
|
Плотность вероятности |
|
Функция распределения |
|
Математическое ожидание |
|
Медиана |
|
Мода |
|
Дисперсия |
|
Коэффициент асимметрии |
|
Коэффициент эксцесса |
|
Информационная энтропия |
|
Производящая функция моментов |
|
Характеристическая функция |
|
Нормальное распределение, также называемое гауссовым распределением, гауссианой или распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:
где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.
Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистической физике. Физическая величина, подверженная влиянию значительного числа независимых факторов, способных вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).
Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Зеленая
линия соответствует стандартному
нормальному распределению
Цвета
на этом графике соответствуют графику
наверху