- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
14 Дискретные случайные величины
Определение1: Случайная величина
называется дискретной случайной
величиной, если она принимает не
более чем счетное число значений. Задание
дискретной случайной величины по
определению равносильно заданию закона
распределения случайной величины в
следующем виде:
где
Следующее утверждение отражает связь между функцией распределения дискретной случайной величины и законом распределения случайной величины.
Утверждение 1: Закон распределения и функция распределения дискретной случайной величины взаимно однозначно определяют друг друга.
Примеры дискретных случайных величин:
1) дискретная случайная величина Бернулли(закон распределения Бернулли). Закон распределения дискретной случайной величины Бернулли имеет следующий вид: 0<p<1
Такому распределению соответствует бросание монеты, на одной стороне которой - 0, а на второй - 1.
2) дискретная биномиальная случайная величина(биномиальное распределение). Закон распределения данной дискретной случайной величины запишется следующим образом:
где
Число успехов в n испытаниях схемы Бернулли имеет биномиальное распределение.
3) дискретная
случайная величина Пуассона(пуассоновское
распределение с параметром
).
Закон распределения дискретной случайной
величины Пуассона задается следующим
образом:
где
-
параметр.
Закон распределения случайной величины Пуассона носит название закона редких событий, поскольку оно всегда появляется там, где производится большое число испытаний, в каждом из которых с малой вероятностью происходит "редкое" событие. По закону Пуассона распределены, например, число вызовов, поступивших на телефонную станцию, число распавшихся нестабильных частиц и т.д.
4) дискретная геометрическая случайная величина (геометрическое распределение). Закон распределения геометрической дискретной случайной величины имеет вид
Пусть производятся независимые испытания, причем в каждом испытании возможны два исхода - "успех" с вероятностью p или "неуспех" с вероятностью 1 - p , 0 < p < 1 . Обозначим через число испытаний до первого появления "успеха", тогда будет дискретной геометрической случайной величиной.
Непрерывные случайные величины
Определение
2: Распределение случайной величины
называется непрерывным, а сама случайная
величина - непрерывной случайной
величиной, если для любого
,
где
-
интегрируемая по Лебегу функция. Функция
называется
плотностью распределения случайной
величины
.
Теорема 1: Для
того чтобы случайная величина
была
непрерывной случайной величиной,
необходимо и достаточно, чтобы для
любого
(1)
Замечание 1: Из представления (1) видно, что функция распределения непрерывной случайной величины является непрерывной функцией.
Свойства плотности распределения:
1)
2)
почти всюду.
3)
для любых х, являющихся точками
непрерывности плотности.
Теорема 2: Для того, чтобы функция p = p(x) была плотностью распределения некоторой случайной величины , необходимо и достаточно, чтобы она удовлетворяла свойствам 1) и 2) плотности.
