Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статич методы обработки.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.93 Mб
Скачать

Пример расчёта

Пусть вероятность брака у первого рабочего , у второго рабочего — , а у третьего — . Первый изготовил деталей, второй — деталей, а третий — деталей. Начальник цеха берёт случайную деталь, и она оказывается бракованной. Спрашивается, с какой вероятностью эту деталь изготовил третий рабочий?

Cобытие — брак детали, событие — деталь произвёл рабочий . Тогда , где , а . По формуле полной вероятности

По формуле Байеса получим:

11 Формула Бернулли — формула в теории вероятностей, позволяющая находить вероятность появления события A при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений — сложения и умножения вероятностей — при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли, выведшего формулу.

Формулировка

Теорема: Если Вероятность p наступления события Α в каждом испытании постоянна, то вероятность того, что событие A наступит k раз в n независимых испытаниях, равна: , где .

Доказательство

Так как в результате независимых испытаний, проведенных в одинаковых условиях, событие наступает с вероятностью , следовательно, противоположное ему событие с вероятностью .

Обозначим  — наступление события в испытании с номером . Так как условия проведения опытов одинаковые, то эти вероятности равны. Пусть в результате опытов событие наступает раз, тогда остальные раз это событие не наступает. Событие может появиться раз в испытаниях в различных комбинациях, число которых равно количеству сочетаний из элементов по . Это количество сочетаний находится по формуле:

.

При этом вероятность каждой комбинации равна произведению вероятностей:

.

Применяя теорему сложения вероятностей несовместных событий, получим окончательную Формулу Бернулли:

, где .

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А={выпала шестерка}. Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:

Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m0=0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20. Решение: при n =19 находим

Таким образом, максимальная вероятность достигается для двух значений m0, равных 11 и 12. Эта вероятность равна P19(11)=P19(12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m0, т.к.

не является целым числом. Наивероятнейшее число наступлений успеха m0 равно 12. Вероятность его появления равна P20(12)=0,1797. Совпадение чисел P20(12) и P19(12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона

12 Предельные теоремы для схемы Бернулли

Подпункты этого параграфа:

  • Пуассоновское приближение

  • Нормальное приближение

  • О применимости предельных теорем в схеме Бернулли

К настоящему моменту мы накопили значительное число точных результатов, относящихся к последовательности независимых испытаний Бернулли и связанному с ней биномиальному распределению. Мы знаем, что , число успехов в последовательности из независимых испытаний Бернулли, можно представить в виде

(11)

где -- независимые одинаково распределенные бернуллиевские случайные величины. Мы знаем в явном виде распределение  , а именно,

где -- вероятность успеха в единичном испытании.

Вместе с тем, во многих задачах приходится находить вероятности при больших значениях  . Это может вызвать значительные вычислительные трудности ввиду громоздкости биномиальных коэффициентов и необходимости возводить числа и в высокие степени. Ниже мы рассмотрим две важные предельные ситуации, когда биномиальное распределение может быть приближено другими распределениями.